JOURNAL OF NUMBER THEORY | 卷:158 |
Explicit estimates for the number of rational points of singular complete intersections over a finite field | |
Article | |
Matera, Guillermo1,2  Perez, Mariana1  Privitelli, Melina3  | |
[1] Univ Nacl Gen Sarmiento, Inst Desarrollo Humano, Buenos Aires, DF, Argentina | |
[2] Natl Council Sci & Technol CONICET, Buenos Aires, DF, Argentina | |
[3] Univ Nacl Gen Sarmiento, Inst Ciencias, Buenos Aires, DF, Argentina | |
关键词: Finite fields; Singular complete intersections; Rational points; Bertini's smoothness theorem; Hooley-Katz estimate; | |
DOI : 10.1016/j.jnt.2015.06.007 | |
来源: Elsevier | |
【 摘 要 】
Let V subset of P-n((F) over bar (q)) be a complete intersection defined over a finite field F-q of dimension r and singular locus of dimension at most 0 <= s <= r - 2. We obtain an explicit version of the Hooley-Katz estimate vertical bar vertical bar V(F-q)vertical bar - p(r vertical bar) = O(q((r+s+1)/2)), where vertical bar V(F-q)vertical bar denotes the number of F-q-rational points of V and p(r) : = vertical bar p(r)(F-q)vertical bar. Our estimate improves all the previous estimates in several important cases. Our approach relies on tools of classical algebraic geometry. A crucial ingredient is a new effective version of the Bertini smoothness theorem, namely an explicit upper bound of the degree of a proper Zariski closed subset of (P-n)(s+1) ((F) over bar (q)) which contains all the singular linear sections of V of codimension s + 1. (C) 2015 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jnt_2015_06_007.pdf | 456KB | download |