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Bertini’s smoothness theorem
Hooley–Katz estimate

1. Introduction

Let Fq be the finite field of q elements and let Fq be the algebraic closure of Fq. By 
Pn := Pn(Fq) and An := An(Fq) we denote the n-dimensional projective and affine spaces 
defined over Fq respectively. For any affine or projective variety V , we denote by V (Fq)
the set of Fq-rational points of V , that is, the set of points of V with coordinates in Fq, 
and by |V (Fq)| its cardinality. In particular, it is well-known that, for r ≥ 0,

pr := |Pr(Fq)| = qr + · · · + q + 1.

Let V ⊂ Pn be an ideal-theoretic complete intersection defined over Fq, of dimension r

and multidegree d := (d1, . . . , dn−r). In a fundamental work [9], P. Deligne showed that, 
if V is nonsingular, then

∣∣|V (Fq)| − pr
∣∣ ≤ b′r(n,d) q r

2 , (1)

where b′r(n, d) is the rth primitive Betti number of any nonsingular complete intersection 
of Pn of dimension r and multidegree d (see [11, Theorem 4.1] for an explicit expression 
of b′r(n, d) in terms of n, r and d).

This result was extended by C. Hooley and N. Katz to singular complete intersections. 
More precisely, in [15] it is proved that, if the singular locus of V has dimension at most s, 
then

|V (Fq)| = pr + O(q
r+s+1

2 ), (2)

where the constant implied by the O-notation depends only on n, r and d, and it is not 
explicitly given. Finally, S. Ghorpade and G. Lachaud obtained the following explicit 
version of the Hooley–Katz bound (2) in [11] (see also [12]):

∣∣|V (Fq)| − pr
∣∣ ≤ b′r−s−1(n− s− 1,d) q

r+s+1
2 + C(n, r,d) q

r+s
2 , (3)

where C(n, r, d) := 9 · 2n−r
(
(n − r)d + 3

)n+1 and d := max1≤i≤n−r di.
For the potential applications of (3), the fact that the constant C(n, r, d) depends 

exponentially on the dimension n of the ambient space Pn may be inconvenient. This can 
be seen for example in [7,17,6], where we use estimates on the number of Fq-rational points 
of singular complete intersections to determine the asymptotic behavior of the average 
cardinality of value sets and the distribution of factorization patterns of families of 
univariate polynomials defined over Fq having certain coefficients with prescribed values. 
For this reason, in this paper we obtain another explicit estimate on |V (Fq)| where this 
exponential dependency on n is avoided.
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From a methodological point of view, the estimates in [11] are based on the 
Grothendieck–Lefschetz Trace Formula, together with estimates for the dimension of cer-
tain spaces of étale �-adic cohomology associated with the complete intersection V ⊂ Pn

under consideration.
Our approach is rather different and relies on tools of classical projective algebraic 

geometry, combined with Deligne’s estimate (1). The crucial geometric ingredient is the 
following effective version of the Bertini smoothness theorem, which provides quantitative 
information on the set of linear sections L ⊂ Pn defined over Fq such that V ∩ L has 
codimension s + 1 and is nonsingular.

Theorem 1.1. Let V ⊂ Pn be a complete intersection defined over Fq, of dimension r, 
multidegree d := (d1, . . . , dn−r), and singular locus of dimension at most 0 ≤ s ≤ r − 2. 
Let δ :=

∏n−r
i=1 di and D :=

∑n−r
i=1 (di − 1). There exists a hypersurface H ⊂ (Pn)s+1, 

defined by a multihomogeneous polynomial of degree at most Dr−s−1(D+ r− s)δ in each 
group of variables, with the following property: if γ ∈ (Pn)s+1 \ H and L := {γ · x = 0}, 
then V ∩ L is nonsingular of pure dimension r − s − 1.

Refs. [1] and [4] provide effective versions of the Bertini smoothness theorem for 
hypersurfaces and normal complete intersections respectively. Theorem 1.1 significantly 
improves and generalizes both results. We also remark that a different variant of an 
effective Bertini smoothness theorem is obtained in [5].

Combining Theorem 1.1 with upper bounds on the number of Fq-rational zeros of 
multihomogeneous polynomials we obtain rather precise estimates on the number of 
nonsingular Fq-definable linear sections of codimension s + 1 of V . Then the analysis 
of the second moment of the number of Fq-rational points of V in linear sections of 
codimension s + 1 yields an estimate on the number of Fq-rational points of V . More 
precisely, we obtain the following result.

Theorem 1.2. Let V ⊂ Pn be a complete intersection defined over Fq, of dimension r, 
multidegree d := (d1, . . . , dn−r), and singular locus of dimension at most 0 ≤ s ≤ r − 2. 
Let δ :=

∏n−r
i=1 di and D :=

∑n−r
i=1 (di − 1). If q > 2(s + 1)Dr−s−1(D + r − s)δ, then

∣∣|V (Fq)| − pr
∣∣ ≤ (

b′r−s−1(n− s− 1,d) + 2
√
δ + 1

)
q

r+s+1
2 . (4)

According to [11, Proposition 4.2], the Betti number b′r−s−1(n − s − 1, d) can be 
bounded from above by a quantity which is roughly of order Dr−sδ. As D is in general 
much smaller than δ, we may say that the error term of (4) grows linearly with δ. In 
this sense, (4) significantly improves (3), whose error term may include an exponential 
term δn+1 when V is a hypersurface (although in this case our error term grows with 
rate proportional to δr−s+1). On the other hand, (3) is valid without restrictions on q, 
while (4) only holds for q > 2(s + 1)Dr−s−1(D + r − s)δ.

The paper is organized as follows. In Section 2 we include a brief review of the notions 
of classical algebraic geometry which we use. We also obtain an upper bound on the 
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number of Fq-rational zeros of a multihomogeneous polynomial. Section 3 is devoted 
to the proof of Theorem 1.1. Finally, in Section 4 we combine the upper bound of 
Section 2 with Theorem 1.1 and the analysis of the second moment mentioned before 
to prove Theorem 1.2. Taking into account that the condition on q of the statement 
of Theorem 1.2 may restrict its applicability, we obtain a further estimate for normal 
complete intersections which is valid without restrictions on q (Corollary 4.6).

2. Notions, notations and preliminary results

We use standard notions and notations of commutative algebra and algebraic geom-
etry as can be found in, e.g., [13,16,18,19].

Let K be any of the fields Fq or Fq. We denote by An the affine n-dimensional space 
Fq
n and by Pn the projective n-dimensional space over Fqn+1. Both spaces are endowed 

with their respective Zariski topologies over K, for which a closed set is the zero locus 
of a set of polynomials of K[X1, . . . , Xn], or of a set of homogeneous polynomials of 
K[X0, . . . , Xn].

A subset V ⊂ Pn is a projective variety defined over K (or a projective K-variety for 
short) if it is the set of common zeros in Pn of homogeneous polynomials F1, . . . , Fm ∈
K[X0, . . . , Xn]. Correspondingly, an affine variety of An defined over K (or an affine 
K-variety for short) is the set of common zeros in An of polynomials F1, . . . , Fm ∈
K[X1, . . . , Xn]. We think a projective or affine K-variety to be equipped with the induced 
Zariski topology. We shall frequently denote by V (F1, . . . , Fm) or {F1 = 0, . . . , Fm = 0}
the affine or projective K-variety consisting of the common zeros of the polynomials 
F1, . . . , Fm.

In the remaining part of this section, unless otherwise stated, all results referring to 
varieties in general should be understood as valid for both projective and affine varieties.

A K-variety V is K-irreducible if it cannot be expressed as a finite union of proper 
K-subvarieties of V . Further, V is absolutely irreducible if it is Fq-irreducible as a 
Fq-variety. Any K-variety V can be expressed as an irredundant union V = C1∪· · ·∪Cs of 
irreducible (absolutely irreducible) K-varieties, unique up to reordering, which are called 
the irreducible (absolutely irreducible) K-components of V .

For a K-variety V contained in Pn or An, we denote by I(V ) its defining ideal, 
namely the set of polynomials of K[X0, . . . , Xn], or of K[X1, . . . , Xn], vanishing on V . 
The coordinate ring K[V ] of V is defined as the quotient ring K[X0, . . . , Xn]/I(V ) or 
K[X1, . . . , Xn]/I(V ). The dimension dimV of V is the length r of the longest chain 
V0 � V1 � · · · � Vr of nonempty irreducible K-varieties contained in V . We call V
equidimensional if all its irreducible K-components are of the same dimension. We say 
that V has pure dimension r if it is equidimensional of dimension r.

A K-variety of Pn or An of pure dimension n − 1 is called a K-hypersurface. 
A K-hypersurface of Pn (or An) is the set of zeros of a single nonzero polynomial of 
K[X0, . . . , Xn] (or of K[X1, . . . , Xn]).

The degree deg V of an irreducible K-variety V is the maximum number of points lying 
in the intersection of V with a linear space L of codimension dimV , for which V ∩ L
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is a finite set. More generally, following [14] (see also [10]), if V = C1 ∪ · · · ∪ Cs is the 
decomposition of V into irreducible K-components, we define its degree as

deg V :=
s∑

i=1
deg Ci.

According to this definition, the degree of a K-hypersurface V is the degree of a polyno-
mial of minimal degree defining V .

Let V ⊂ An be a K-variety and let I(V ) ⊂ K[X1, . . . , Xn] be the defining ideal of V . 
Let x be a point of V . The dimension dimx V of V at x is the maximum of the dimensions 
of the irreducible K-components of V that contain x. If I(V ) = (F1, . . . , Fm), the tangent 
space TxV to V at x is the kernel of the Jacobian matrix (∂Fi/∂Xj)1≤i≤m,1≤j≤n(x) of 
the polynomials F1, . . . , Fm with respect to X1, . . . , Xn at x. We have the following 
inequality (see, e.g., [18, p. 94]):

dim TxV ≥ dimx V.

The point x is regular if dim TxV = dimx V . Otherwise, the point x is called singular. The 
set of singular points of V is the singular locus Sing(V ) of V ; it is a closed K-subvariety 
of V . A variety is called nonsingular if its singular locus is empty. For a projective variety, 
the concepts of tangent space, regular and singular point can be defined by considering 
an affine neighborhood of the point under consideration.

2.1. Complete intersections

A K-variety V of dimension r in the n-dimensional space is an (ideal-theoretic) com-
plete intersection if its ideal I(V ) over K can be generated by n − r polynomials. If 
V ⊂ Pn is a complete intersection defined over K, of dimension r and degree δ, and 
F1, . . . , Fn−r is a system of homogeneous generators of I(V ), the degrees d1, . . . , dn−r

depend only on V and not on the system of homogeneous generators. Arranging the di
in such a way that d1 ≥ d2 ≥ · · · ≥ dn−r, we call d := (d1, . . . , dn−r) the multidegree
of V .

If V ⊂ Pn is a complete intersection of multidegree d := (d1, . . . , dn−r), then the 
Bézout theorem (see, e.g., [13, Theorem 18.3] or [19, §5.5, p. 80]) asserts that

deg V = d1 · · · dn−r.

We shall consider a particular class of complete intersections, which we now define. 
A K-variety is regular in codimension m if the singular locus Sing(V ) of V has codimen-
sion at least m +1 in V , namely if dimV −dim Sing(V ) ≥ m +1. A complete intersection 
V which is regular in codimension 1 is called normal (actually, normality is a general 
notion that agrees on complete intersections with the one we define here). A fundamen-
tal result for projective complete intersections is the Hartshorne connectedness theorem 
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(see, e.g., [16, Theorem VI.4.2]), which we now state. If V ⊂ Pn is a complete intersection 
defined over K and W ⊂ V is any K-subvariety of codimension at least 2, then V \W is 
connected in the Zariski topology of Pn over K. Applying the Hartshorne connectedness 
theorem with W := Sing(V ), one deduces the following result.

Theorem 2.1. If V ⊂ Pn is a normal complete intersection, then V is absolutely irre-
ducible.

2.2. Rational points

Let Pn(Fq) be the n-dimensional projective space over Fq and let An(Fq) be the 
n-dimensional Fq-vector space Fn

q . For a projective variety V ⊂ Pn or an affine variety 
V ⊂ An, we denote by V (Fq) the set of Fq-rational points of V , namely V (Fq) := V ∩Pn(Fq)
or V (Fq) := V ∩ An(Fq) respectively.

For a projective variety V of dimension r and degree δ, we have (see [11, Proposi-
tion 12.1] or [4, Proposition 3.1]):

|V (Fq)| ≤ δpr. (5)

On the other hand, if V is an affine variety of dimension r and degree δ, then (see, e.g., 
[3, Lemma 2.1])

|V (Fq)| ≤ δqr. (6)

2.3. Multiprojective space

Let N := Z≥0 be the set of nonnegative integers. For n := (n1, . . . , nm) ∈ Nm, 
we define |n| := n1 + · · · + nm. Denote by Pn := Pn(Fq) the multiprojective space 
Pn := Pn1×· · ·×Pnm . For 1 ≤ i ≤ m, let Γi := {Γi,0, . . . , Γi,ni

} be group of ni+1 variables 
and let Γ := {Γ1, . . . , Γm}. For K := Fq or K := Fq, a multihomogeneous polynomial of 
K[Γ] of multidegree d := (d1, . . . , dm) is an element which is homogeneous of degree di in 
Γi for 1 ≤ i ≤ m. An ideal I ⊂ K[Γ] is multihomogeneous if it is generated by a family of 
multihomogeneous polynomials. For any such ideal, we denote by V (I) ⊂ Pn the variety 
defined as its set of common zeros. In particular, a hypersurface in Pn defined over K is 
the set of zeros of a multihomogeneous polynomial of K[Γ]. The notions of irreducible 
variety and dimension of a subvariety of Pn are defined as in the projective space.

2.3.1. Number of zeros of multihomogeneous hypersurfaces
With notations as above, let Fn+1

q := Fn1+1
q × · · · × Fnm+1

q . Let F ∈ Fq[Γ] be a mul-
tihomogeneous polynomial of multidegree d := (d1, . . . , dm). In this section we establish 
two basic results concerning the number of Fq-rational zeros of F . The first result is a 
nontrivial upper bound on the number of zeros of F in Fn+1

q , which improves (6) for 
multiprojective hypersurfaces.
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For α ∈ Nm, we denote dα := d α1
1 · · · d αm

m . Further, let

ηm(d,n) :=
∑

ε∈{0,1}m\{0}
(−1)|ε|+1d εq|n|+m−|ε|.

Observe that ηm(d, n) < q|n|+m = |Fn+1
q | if q > max1≤i≤m di, while this inequality may 

not hold for q ≤ max1≤i≤m di. We have the following result.

Proposition 2.2. Let F ∈ Fq[Γ] be a multihomogeneous polynomial of multidegree d with 
max1≤i≤m di < q and let N be the number of zeros of F in Fn+1

q . Then

N ≤ ηm(d,n).

Proof. We argue by induction on m. The case m = 1 is (6).
Suppose that the statement holds for m − 1 and let F ∈ Fq[Γ] be an m-homogeneous 

polynomial of multidegree d := (d1, . . . , dm). Let N be the number of zeros of F in Fn+1
q , 

and let Zm be the set of γm in Fnm+1
q such that the substitution F (Γ1, . . . , Γm−1, γm) of 

γm for Γm in F yields the zero polynomial of Fq[Γ1, . . . , Γm−1]. Consider F as an element 
of Fq[Γm][Γ1, . . . , Γm−1] and let A ∈ Fq[Γm] be a nonzero homogeneous polynomial of 
degree dm which occurs as the coefficient of a monomial Γα1

1 · · ·Γαm−1
m−1 in the dense 

representation of F . As Zm is contained in the set of zeros in Fnm+1
q of A, by (6) we 

have |Zm| ≤ dmqnm .
Since dm < q by hypothesis, it follows that |Zm| ≤ dmqnm < qnm+1 = |Fnm+1

q |, 
which implies that Fnm+1

q \Zm is nonempty. For γm ∈ Fnm+1
q \Zm, denote by Nm−1 :=

Nm−1(γm) the number of zeros of F (Γ1, . . . , Γm−1, γm) in Fn1+1
q ×· · ·×F

nm−1+1
q . By the 

inductive hypothesis and the fact that max1≤i≤m−1 di < q, we see that

Nm−1 ≤ ηm−1(d∗,n∗) < q|n
∗|+m−1,

where d∗ := (d1, . . . , dm−1) and n∗ := (n1, . . . , nm−1). As a consequence,

N ≤ |Zm|q|n∗|+m−1 + (qnm+1 − |Zm|)ηm−1(d∗,n∗)

= |Zm|
(
q|n

∗|+m−1 − ηm−1(d∗,n∗)
)

+ ηm−1(d∗,n∗)qnm+1 ≤ ηm(d,n).

This completes the proof of the proposition. �
The second result is concerned with conditions of existence of a point of Pn(Fq) which 

does not annihilate F and will be used to obtain an effective version of the Bertini 
smoothness theorem (Theorem 3.5).

Corollary 2.3. Let F ∈ Fq[Γ] be a multihomogeneous polynomial of multidegree d and let 
d := max1≤i≤m di. If q > d, then there exists γ ∈ Pn(Fq) with F (γ) 	= 0.
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Proof. It suffices to show that there exists γ′ ∈ Fn+1
q with F (γ′) 	= 0. Let N be the 

number of zeros of F in Fn+1
q . According to Proposition 2.2, the number N�=0 of elements 

in Fn+1
q not annihilating F is bounded as follows:

N�=0 ≥ q|n|+m − ηm(d,n) =
∑

ε∈{0,1}m

(−1)|ε|d εq|n|+m−|ε| =
m∏
i=1

(qni+1 − diq
ni).

Since q > d, we have qni+1 > diq
ni for 1 ≤ i ≤ m, which yields the corollary. �

3. On the existence of nonsingular linear sections

In this section we establish a Bertini-type theorem, namely we show the existence of 
nonsingular linear sections of a singular complete intersection. The Bertini smoothness 
theorem asserts that a generic hyperplane section of a nonsingular variety V is nonsin-
gular. A more precise variant of this result asserts that, if V ⊂ Pn is a projective variety 
with singular locus of dimension at most s, then the section of V defined by a generic 
linear space of Pn of codimension at least s + 1 is nonsingular (see, e.g., [11, Proposi-
tion 1.3]). Identifying each section of this type with a point in the multiprojective space 
(Pn)s+1, we show the existence of a hypersurface H ⊂ (Pn)s+1 containing all the linear 
subvarieties of codimension s + 1 of (Pn)s+1 which yield singular sections of V . We also 
estimate the multidegree of this hypersurface.

Let V ⊂ Pn be a complete intersection defined by homogeneous polynomials 
F1, . . . , Fn−r ∈ Fq[X0, . . . , Xn] of degrees d1 ≥ · · · ≥ dn−r ≥ 2 respectively. Let 
Σ := Sing V and suppose that there exists s with 0 ≤ s ≤ r − 2 such that dim Σ ≤ s. In 
particular, V is a normal complete intersection, and therefore absolutely irreducible 
(Theorem 2.1). We denote by Vsm := V \ Σ the smooth locus of V . Finally, set 
δ := deg V = d1 · · · dn−r and D :=

∑n−r
i=1 (di − 1).

Set X := (X0, . . . , Xn). For μ := (μ0 : · · · : μn) ∈ Pn, we shall use the notation 
μ · X := μ0X0 + · · · + μnXn. Let γ := (γ0, . . . , γs) ∈ (Pn)s+1, where γ0, . . . , γs are 
Fq-linearly independent, and consider the linear variety L ⊂ Pn defined by

L := {γ · x = 0} := {x ∈ Pn : γ0 · x = · · · = γs · x = 0}.

Our goal is to prove the existence of a hypersurface H ⊂ (Pn)s+1 with the following 
property: if γ ∈ (Pn)s+1 \ H and L := {γ · x = 0}, then V ∩ L is nonsingular of pure 
dimension r − s − 1.

Let Γi := (Γi,0, . . . , Γi,n) be a group of n + 1 variables for 0 ≤ i ≤ s and denote 
Γ := (Γ0, . . . , Γs). We consider the incidence variety

W := (Vsm × U) ∩ {Γ0 ·X = 0, . . . ,Γs ·X = 0,Δ1(Γ, X) = 0, . . . ,Δm(Γ, X) = 0},

where U ⊂ (Pn)s+1 is the Zariski open subset of (s + 1) × (n + 1)-matrices of maximal 
rank and Δ1, . . . , Δm are the maximal minors of the matrix
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M(X,Γ) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂F1
∂X0

. . . ∂F1
∂Xn

...
...

∂Fn−r

∂X0
. . . ∂Fn−r

∂Xn

Γ0,0 . . . Γ0,n
...

...
Γs,0 . . . Γs,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7)

Let l := n(s + 1). The following result states the main property of the incidence variety 
W we shall use.

Proposition 3.1. W is a subvariety of Vsm × U of dimension l − 1.

Proof. Let π1 : W → Vsm be the mapping π1(x, γ) := x. Fix x ∈ Vsm and consider the 
fiber π−1

1 (x). We have π−1
1 (x) = {x} × Ω, where Ω ⊂ U is the set of γ := (γ0, . . . , γs)

such that γ0 · x = · · · = γs · x = 0 and the matrix M(x, γ) is not of full rank. The latter 
condition is equivalent to

〈γ0, . . . , γs〉 ∩
〈
∇F1(x), . . . ,∇Fn−r(x)

〉
	= {0}, (8)

where 〈v0, . . . , vm〉 ⊂ An+1 denotes the linear variety spanned by v0, . . . , vm in An+1. Let 
V := {v ∈ An+1 : v · x = 0}. Observe that ∇Fj(x) ∈ V for 1 ≤ j ≤ n − r. Then (8) holds 
if and only if γ0, . . . , γs are not linearly independent in the quotient Fq-vector space

W := V/〈∇F1(x), . . . ,∇Fn−r(x)〉.

As Ω and U are subsets of the multiprojective space (Pn)s+1, we may consider their 
multi-affine cones Ωaff and Uaff in (An+1)s+1. Since Ωaff ⊂ Vs+1 and Vs+1 is isomorphic 
to Hom

Fq
(As+1, V), the multi-affine cone Ωaff may be identified with a subset of the 

latter.
Now we consider the situation modulo S := 〈∇F1(x), . . . , ∇Fn−r(x)〉, that is, we 

consider the surjective mapping Φ : Hom
Fq

(As+1, V) → Hom
Fq

(As+1, W) induced by the 
quotient mapping V → W. With a slight abuse of notation, we shall extend Φ to a 
surjective mapping from Hom

Fq
(As+1, An+1) to Hom

Fq
(As+1, An+1/S) and denote this 

extension by Φ. From (8) it follows that Ωaff modulo S is isomorphic to the Zariski open 
subset L′

s(As+1, W) ∩ Φ(Uaff) of L′
s(As+1, W), where

L′
s(As+1,W) := {f ∈ Hom

Fq
(As+1,W) : rank(f) ≤ s}.

According to [2, Proposition 1.1], L′
s(As+1, W) is an absolutely irreducible variety 

of dimension s(r + 1). Since we are considering elements of Hom
Fq

(As+1, V) ∼= Vs+1

modulo Ss+1, and S := 〈∇F1(x), . . . , ∇Fn−r(x)〉 has dimension n − r because x ∈ Vsm, 
it follows that the multi-affine cone of π−1

1 (x) = {x} × Ω is an open dense subset of 
an irreducible variety of Vsm × Uaff of dimension s(r + 1) + (n − r)(s + 1) = l + s − r. 
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This implies that π−1
1 (x) = {x} ×Ω is an irreducible subvariety of Vsm ×U of dimension 

l + s − r − (s + 1) = l − r − 1.
Let W =

⋃
j Cj be the decomposition of W into irreducible components. Our previous 

arguments show that π1 : W → Vsm is surjective. Then π1(W) = Vsm =
⋃

j π1(Cj). As 
a consequence, there exists i with dim π1(Ci) = r. The restriction π1|Ci

: Ci → π1(Ci) is 
dominant. For any x ∈ π1(Ci), the fiber π−1

1 (x) is an irreducible subvariety of Ci. Hence, 
the theorem on the dimension of fibers (see, e.g., [18, §I.6.3, Theorem 7]) shows that, for 
any x ∈ π1(Ci),

l − r − 1 = dim π−1
1 (x) = dim Ci − dim π1(Ci) = dim Ci − r.

This shows that Ci has dimension l − 1. On the other hand, for any component Cj of 
W we have that π1|Cj

: Cj → π1(Cj) is dominant and the theorem on the dimension of 
fibers asserts that, for any x ∈ π1(Cj),

l − r − 1 = dim π−1
1 (x) = dim Cj − dim π1(Cj) ≥ dim Cj − r.

We conclude that dim Cj ≤ l − 1, which finishes the proof of the proposition. �
An immediate consequence of Proposition 3.1 is that the Zariski closure of the image 

of the projection π2 : W → U on the second argument is a variety of dimension at most 
l − 1. Our interest in the set π2(W) is based on the following lemma.

Lemma 3.2. If γ ∈ U \π2(W), then the linear section Vsm∩L defined by L := {γ ·x = 0}
is nonsingular of pure dimension r − s − 1.

Proof. Fix γ ∈ U \ π2(W) and denote L := {γ · x = 0}. According to [11, Lemma 1.1], 
Sing(Vsm ∩ L) = N(Vsm, L), where N(Vsm, L) is the set of points x ∈ Vsm where V and 
L do not meet transversely, that is, dimTxV ∩ L > dimTxV − codimL = r − s − 1. For 
x ∈ Vsm ∩ L, we have (x, γ) /∈ W and then M(x, γ) has maximal rank, where M(X, Γ)
is the matrix of (7). As a consequence, dimTxV ∩L = r− s − 1. This implies that V and 
L meet transversely at x, and hence x is a nonsingular point of Vsm∩L. This shows that 
Vsm ∩ L is nonsingular.

By [18, §I.6.2, Corollary 5], each irreducible component of Vsm ∩ L has dimension 
at least r − s − 1. For x ∈ Vsm ∩ L, the matrix M(x, γ) has maximal rank. Hence, 
dim Tx(V ∩ L) ≤ r − s − 1, which implies that each irreducible component of Vsm ∩ L
containing x has dimension at most r − s − 1. We conclude that Vsm ∩ L is of pure 
dimension r − s − 1. �

We shall show that the set π2(W) is contained in a hypersurface of (Pn)s+1 of “low” 
degree. Denote

LΓ := {Γ0 ·X = 0, . . . ,Γs ·X = 0}

:= {(x,γ) ∈ (Pn)s+2 : γ0 · x = 0, . . . , γs · x = 0},
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and let W ′′ ⊂ (Pn)s+2 be the following variety:

W ′′ := W ∪
(
(Σ × (Pn)s+1) ∩ LΓ

)
∪
(
(V × ((Pn)s+1 \ U)) ∩ LΓ

)
. (9)

We have the following result.

Lemma 3.3. The variety W ′′ has dimension l − 1 and the following identity holds:

W ′′ =
((
V × (Pn)s+1) ∩ LΓ

)
∩ {Δ1(Γ, X) = 0, . . . ,Δm(Γ, X) = 0}. (10)

Proof. First we prove (10). It is easy to see that the left-hand side is contained in the 
right-hand side. On the other hand, for (x, γ) ∈

(
V × (Pn)s+1) ∩ LΓ, either x ∈ Σ, or 

γ ∈ (Pn)s+1 \U , or (x, γ) ∈ Vsm ×U . In the first two cases, (x, γ) ∈ W ′′ and the identity 
Δj(x, γ) = 0 is satisfied for 1 ≤ j ≤ m. In the third case we have (x, γ) ∈ W ′′ if and 
only if Δj(x, γ) = 0 for 1 ≤ j ≤ m. This shows the claim.

Next we determine the dimension of W ′′. Observe that Σ ×(Pn)s+1 is a cylinder whose 
intersection with the equations Γ0 ·X = 0, . . . , Γs ·X = 0 has codimension s + 1. Hence, 
(Σ × (Pn)s+1) ∩ LΓ has dimension at most s + l − (s + 1) = l − 1. On the other hand, 
the affine cone of (Pn)s+1 \ U is the closed set Ls(As+1, An+1) of matrices of rank at 
most s. By [2, Proposition 1.1], dimLs(As+1, An+1) = s(n + 2); thus, (Pn)s+1 \ U has 
dimension s(n + 2) − (s + 1) = l + s − n − 1. Then V ×

(
(Pn)s+1 \ U

)
has dimension 

r + l + s − n − 1. Consider the projection π2 :
(
V × ((Pn)s+1 \ U)

)
∩ LΓ → (Pn)s+1 \ U

on the second argument. The intersection of V with a generic linear variety of Pn of 
codimension s is of pure dimension r− s. Let γ := (γ0, . . . , γs) be a point of (Pn)s+1 \ U
with {γ0 ·x = 0, . . . , γs−1 ·x = 0} ⊂ Pn generic in the sense above. Then the fiber π−1

2 (γ)
has dimension r − s and the theorem on the dimension of fibers implies

r − s = dim π−1
2 (γ) ≥ dim

(
V × ((Pn)s+1 \ U)

)
∩ LΓ − (l + s− n− 1).

We deduce that dim
(
V × ((Pn)s+1 \ U)

)
∩ LΓ ≤ l − n + r − 1 < l − 1. Combining these 

facts with Proposition 3.1 we conclude that W ′′ has dimension l − 1. �
As an immediate consequence of Lemma 3.3, we obtain the following result.

Corollary 3.4. There exist linear combinations Δ1, . . . , Δr−s of the maximal minors 
Δ1(Γ, X), . . . , Δm(Γ, X) of the matrix M(X, Γ) of (7) such that the variety W ′ ⊂
(Pn)s+2 defined as the set of common solutions of

F1 = 0, . . . , Fn−r = 0,Γ0 ·X = 0, . . . ,Γs ·X = 0,Δ1 = 0, . . . ,Δr−s = 0, (11)

is of pure dimension l − 1 and contains W ′′.
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Proof. Observe that the intersection of V × (Pn)s+1 with LΓ has codimension s + 1, 
that is,

dim
(
V × (Pn)s+1) ∩ LΓ = r + (n− 1)(s + 1) = r − s + l − 1.

Then the result is an easy consequence of the fact that W ′′ has codimension at least 
r−s in 

(
V × (Pn)s+1)∩LΓ. Indeed, applying, e.g., [5, Lemma 4.4] to 

(
V × (Pn)s+1)∩LΓ

and W ′′, we readily deduce the corollary. �
Now we are in a position to prove that the main result of this section, namely that 

the set of γ ∈ (Pn)s+1 for which the linear section V ∩ {γ · x = 0} is not smooth of 
codimension s + 1, is contained in a hypersurface of (Pn)s+1 of “low” degree.

Theorem 3.5. Let V ⊂ Pn be a complete intersection defined over Fq, of dimension r, 
multidegree d := (d1, . . . , dn−r), and singular locus of dimension at most 0 ≤ s ≤ r − 2. 
Let δ :=

∏n−r
i=1 di and D :=

∑n−r
i=1 (di − 1). There exists a hypersurface H ⊂ (Pn)s+1, 

defined by a multihomogeneous polynomial of degree at most Dr−s−1(D+ r− s)δ in each 
group of variables Γi, with the following property: if γ ∈ (Pn)s+1\H and L := {γ ·x = 0}, 
then V ∩ L is nonsingular of pure dimension r − s − 1.

Proof. By the version of the Bertini smoothness theorem of, e.g., [11, Proposition 1.3], 
for generic γ ∈ (Pn)s+1 and L := {γ · x = 0}, the linear section V ∩ L is nonsingular 
of pure codimension s + 1. Furthermore, as the polynomials Δ1, . . . , Δr−s of (11) are 
generic linear combinations of Δ1, . . . , Δm, we may assume without loss of generality 
that the equations

F1 = 0, . . . , Fn−r = 0,γ ·X = 0,Δ1(γ, X) = 0, . . . ,Δr−s(γ, X) = 0,

do not have common solutions in Pn. Denote K := Fq(Γ). Then the equations

F1 = 0, . . . , Fn−r = 0,Γ ·X = 0,Δ1(Γ, X) = 0, . . . ,Δr−s(Γ, X) = 0 (12)

do not have common solutions in the n-dimensional projective space Pn
K over K. As 

a consequence, the multidimensional resultant of the corresponding polynomials is a 
nonzero element of Fq[Γ] which vanishes on γ ∈ (Pn)s+1 if and only if the substitution 
of γ for Γ in (12) yields a nonempty variety of Pn.

Define di := 1 for n − r + 1 ≤ i ≤ n − r + s + 1 and di := D for n − r + s + 2 ≤
i ≤ n + 1 so that the polynomials in (12) have degree d1, . . . , dn+1 in X respectively. 
Set Di :=

(
di+n
n

)
− 1 for 1 ≤ i ≤ n + 1 and denote D := (D1, . . . , Dn+1) and PD =

PD1 × · · · ×PDn+1 . Let Λi be a group of Di + 1 indeterminates over Fq for 1 ≤ i ≤ n + 1, 
Fq[Λ] := Fq[Λ1, . . . , Λn+1] and let P ∈ Fq[Λ] be the multivariate resultant of generic 
polynomials of Fq[Λ1][X], . . . , Fq[Λn+1][X] of degrees d1, . . . , dn+1 respectively. Denote 
by Hgen ⊂ PD the hypersurface defined by P . For γ ∈ (Pn)s+1, the substitution of γ for 
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Γ in (12) yields a nonempty variety of Pn if and only if the corresponding (n + 1)-tuple 
of polynomials 

(
F1, . . . , Fn−r, γ ·X, Δ1(γ, X), . . . , Δr−s(γ, X)

)
belongs to Hgen. Let φ :

(Pn)s+1 → PD be the regular mapping defined as

φ(γ) :=
(
F1, . . . , Fn−r,γ ·X,Δ1(γ, X), . . . ,Δr−s(γ, X)

)
.

Finally, let H be the hypersurface of (Pn)s+1 defined by the (nonzero) polynomial φ∗(P ), 
where φ∗ : Fq[Λ] → Fq[Γ] is the Fq-algebra homomorphism induced by φ. We claim that 
H satisfies the requirements in the statement of the theorem.

Indeed, let γ /∈ H. Then the substitution of γ for Γ in (12) yields the empty variety 
of Pn. In particular, γ /∈ π2(W ′), where W ′ is the variety of Corollary 3.4. By the 
definition of W ′ we have γ /∈ π2(W ′′), where W ′′ is the variety of (9). This implies that 
γ ∈ U \π2(W), and Lemma 3.2 shows that Vsm ∩L is smooth of pure codimension s +1. 
Furthermore, from the definition of W ′′ it follows that γ /∈ π2

(
(Σ ×(Pn)s+1) ∩LΓ

)
, which 

implies that Σ ∩L = ∅. We conclude that V ∩L = Vsm∩L is smooth of pure codimension 
s + 1.

Finally we prove the bound on the multidegree of H of the statement of the theorem. 
According to, e.g., [8, Chapter 3, Theorem 3.1], the multivariate resultant P ∈ Fq[Λ] is 
a multihomogeneous polynomial with

degPΛi
=

{
Dr−sδ for n− r + 1 ≤ i ≤ n− r + s + 1,

Dr−s−1δ for n− r + s + 2 ≤ i ≤ n + 1.

The homomorphism φ∗ : Fq[Λ] → Fq[Γ] maps Λn−r+1+i to Γi for 0 ≤ i ≤ s and 
Λn−r+s+1+i on the vector of coefficients of Δi ∈ Fq[Γ][X] for 1 ≤ i ≤ r − s. Since 
each coefficient of Δi ∈ Fq[Γ] is homogeneous of degree 1 in Γj for 0 ≤ j ≤ s, we see that

degΓi
φ∗(P ) = degΛn−r+1+i

P +
n+1∑

j=n−r+s+2
degΛj

P = Dr−sδ + (r − s)Dr−s−1δ.

This finishes the proof of the theorem. �
According to Theorem 3.5, for “most” elements γ ∈ (Pn)s+1 the linear section

V ∩ L := V ∩ {γ · x = 0} is nonsingular of codimension s + 1. Furthermore, com-
bining Theorem 3.5 with the results of Section 2.3.1 we are able to estimate the number 
of “good” linear sections V ∩L which are defined over Fq, which is essential for the results 
of Section 4. In particular, for q > Dr−s−1(D + r − s)δ, Corollary 2.3 proves that there 
exists γ ∈ (Pn(Fq))s+1 \ H. This yields an effective version of the Bertini smoothness 
theorem, which may be of independent interest. We remark that this result will not be 
used in the sequel.

Theorem 3.6. Let V ⊂ Pn be a complete intersection defined over Fq, of dimension r, 
multidegree d := (d1, . . . , dn−r), and singular locus of dimension at most 0 ≤ s ≤ r − 2. 
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Let δ :=
∏n−r

i=1 di and D :=
∑n−r

i=1 (di−1). If q > Dr−s−1(D+ r− s)δ, then there exists a 
linear variety L ⊂ Pn defined over Fq of dimension n − s − 1 such that the linear section 
V ∩ L is nonsingular of pure codimension s + 1.

An effective version of a weak form of a Bertini smoothness theorem for hypersur-
faces is obtained in [1]. Nevertheless, the bound given in [1] is exponentially higher than 
ours and therefore not suitable for our purposes, even in the hypersurface case. On the 
other hand, in [4] a version of the Bertini smoothness theorem for normal complete 
intersections is established, which is significantly generalized and improved by Theo-
rem 3.6. Finally, the result of Theorem 3.6 is similar both quantitatively and qualitatively 
to [5, Corollary 6.6], the main contribution over the latter being the simplicity of the 
approach. Nevertheless, neither Theorem 3.6 nor [5, Corollary 6.6] provides enough in-
formation on the nonsingular linear sections of V of codimension s + 1 defined over Fq
for the purposes of Section 4.

4. Estimates on the number of rational points

Let V ⊂ Pn be an ideal-theoretic complete intersection defined over Fq, of dimension r, 
multidegree d := (d1, . . . , dn−r) and singular locus of dimension at most 0 ≤ s ≤ r − 2. 
As before, we denote δ := deg V = d1 · · · dn−r and D :=

∑n−r
i=1 (di − 1). In this section 

we obtain an explicit version of the Hooley–Katz estimate (2) for V .
The proof of (2) in [15] proceeds in s + 1 steps, considering successive hyperplane 

sections of V until nonsingular sections are obtained. The number of Fq-rational points of 
each of these nonsingular sections is estimated using Deligne’s estimate. A key ingredient 
in [15] is an upper bound for the second moment

M1 :=
∑

m∈F
n+1
q

(
N − q N(m)

)2
,

where N and N(m) are the number of Fq-rational points of V and of the linear section 
of V determined by the hyperplane defined by m. In this section we introduce a variant 
of the second moment M1: the second moment Ms+1 obtained by considering the linear 
sections of V determined by all the linear varieties of codimension s + 1 of Pn defined 
over Fq.

First we estimate the number of nonsingular linear sections of V defined over Fq of 
pure codimension s + 1.

Lemma 4.1. Assume that q > d := Dr−s−1(D + r − s)δ. Let Nns be the number of 
γ ∈ (Fn+1

q )s+1 for which V ∩ L is nonsingular of pure codimension s + 1, where L :=
{γ · x = 0} ⊂ Pn. Then

Nns ≥ (q − d)s+1qn(s+1).
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Proof. Let H ⊂ (Pn)s+1 be the hypersurface of the statement of Theorem 3.5. The 
hypersurface H is defined by a multihomogeneous polynomial F ∈ Fq[Γ] of degree at 
most d in each group of variables Γi. For any γ ∈ (Fn+1

q )s+1 with F (γ) 	= 0, the 
corresponding linear section V ∩ {γ · x = 0} is nonsingular of pure codimension s + 1. 
As a consequence, from Proposition 2.2 we obtain

Nns ≥ q(n+1)(s+1) −
∑

ε∈{0,1}s+1\{0}
(−1)|ε|+1d|ε|q(n+1)(s+1)−|ε|

=
∑

ε∈{0,1}s+1

(−d)|ε|q(n+1)(s+1)−|ε| =
s+1∑
i=0

∑
ε: |ε|=i

(−d)iq(n+1)(s+1)−i.

This implies

Nns ≥ qn(s+1)

(
s+1∑
i=0

(
s + 1
i

)
(−d)iqs+1−i

)
= qn(s+1)(q − d)s+1,

which proves the statement of the lemma. �
Now we consider the second moment defined as

Ms+1 :=
∑

γ∈F
(n+1)(s+1)
q

(
N − qs+1N(γ)

)2
, (13)

where N := |V (Fq)|, N(γ) := |V ∩ L(Fq)| and L := {γ · x = 0}.

Lemma 4.2. We have Ms+1 = Nq(n+1)(s+1)(qs+1 − 1).

Proof. Set t := (n + 1)(s + 1) and observe that

Ms+1 =
∑
γ∈Ft

q

N2 − 2qs+1N
∑
γ∈Ft

q

N(γ) + q2(s+1)
∑
γ∈Ft

q

N(γ)2. (14)

First we consider the second term in the right-hand side of (14):

∑
γ∈Ft

q

N(γ) =
∑
γ∈Ft

q

∑
x∈V (Fq)
γ·x=0

1 =
∑

x∈V (Fq)

∑
γ∈Ft

q

γ·x=0

1 = qt−s−1 N. (15)

On the other hand, concerning the third term of the right-hand side of (14),

∑
γ∈Ft

q

N(γ)2 =
∑
γ∈Ft

q

( ∑
x∈V (Fq)

1
)( ∑

x′∈V (Fq)
′

1
)

=
∑
γ∈Ft

q

( ∑
x∈V (Fq)

1 +
∑

x,x′∈V (Fq), x �=x′

′

1
)
.

γ·x=0 γ·x =0 γ·x=0 γ·x= γ·x =0
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Further, we have
∑
γ∈Ft

q

∑
x,x′∈V (Fq), x �=x′

γ·x= γ·x′=0

1 =
∑

x,x′∈V (Fq)
x�=x′

∑
γ∈F

t
q

γ·x= γ·x′=0

1 =
∑

x,x′∈V (Fq)
x�=x′

qt−2(s+1)

= qt−2(s+1)N(N − 1).

We conclude that
∑
γ∈Ft

q

N(γ)2 = qt−s−1N + qt−2(s+1)N(N − 1). (16)

Combining (14), (15) and (16) we easily deduce the statement of the lemma. �
From Lemma 4.2 we deduce that there are at least 1

2q
(n+1)(s+1) elements γ ∈

F
(n+1)(s+1)
q such that the linear variety L := {γ · x = 0} satisfies the condition

∣∣|V (Fq)| − qs+1|(V ∩ L)(Fq)|
∣∣ ≤ √

2N(qs+1 − 1).

Otherwise, 
∣∣|V (Fq)| −qs+1|(V ∩L)(Fq)|

∣∣ > √
2N(qs+1 − 1) for at least 12q

(n+1)(s+1) linear 
varieties L defined over Fq, and then

Ms+1 > N(qs+1 − 1) q(n+1)(s+1),

which contradicts Lemma 4.2. In other words, we have the following result.

Corollary 4.3. There exist at least 1
2q

(n+1)(s+1) elements γ ∈ F
(n+1)(s+1)
q such that the 

linear variety L := {γ · x = 0} satisfies the condition

∣∣|V (Fq)| − qs+1|(V ∩ L)(Fq)|
∣∣ ≤ √

2N(qs+1 − 1). (17)

Assume that q > d := Dr−s−1(D + r − s)δ. According to Lemma 4.1, there exist at 
least (q−d)s+1qn(s+1) elements γ ∈ (Fn+1

q )s+1 such that the linear section V ∩L defined 
by L := {γ · x = 0} is nonsingular of codimension s + 1. In particular, for

(q − d)s+1qn(s+1) >
1
2q

(n+1)(s+1), (18)

there exists a nonsingular Fq-definable linear section V ∩L of codimension s + 1 satisfy-
ing (17).

Observe that (18) is equivalent to the inequality (1 − d
q )s+1 > 1

2 . By the Bernoulli 
inequality, (1 − d

q )s+1 ≥ 1 −(s +1)dq . Therefore, the condition 1 −(s +1)dq > 1
2 implies (18). 

As a consequence, we obtain the following result.
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Corollary 4.4. For q > 2(s +1)Dr−s−1(D+r−s)δ, there exists a nonsingular Fq-definable 
linear section of V of codimension s + 1 which satisfies (17).

Finally, we are ready to state our estimate on the number of Fq-rational points of a 
singular complete intersection.

Theorem 4.5. Let V ⊂ Pn be a complete intersection defined over Fq, of dimension r, 
multidegree d := (d1, . . . , dn−r), and singular locus of dimension at most 0 ≤ s ≤ r − 2. 
Let δ :=

∏n−r
i=1 di and D :=

∑n−r
i=1 (di − 1). If q > 2(s + 1)Dr−s−1(D + r − s)δ, then

∣∣|V (Fq)| − pr
∣∣ ≤ (

b′r−s−1 + 2
√
δ + 1

)
q

r+s+1
2 , (19)

where b′r−s−1 := b′r−s−1(n − s − 1, d) is the (r − s − 1)th primitive Betti number of any 
nonsingular complete intersection of Pn−s−1 of dimension r and multidegree d.

Proof. Since q > 2(s +1)Dr−s−1(D+r−s)δ, by Corollary 4.4 there exists γ ∈ F
(n+1)(s+1)
q

such that the linear section V ∩L defined by L := {γ ·x = 0} is nonsingular of dimension 
r − s − 1 and satisfies

∣∣|V (Fq)| − qs+1|(V ∩ L)(Fq)|
∣∣ ≤ √

2N(qs+1 − 1).

Fix such an element γ ∈ F
(n+1)(s+1)
q . We have

∣∣|V (Fq)| − pr
∣∣ ≤ ∣∣|V (Fq)| − qs+1|V ∩ L(Fq)|

∣∣ +
∣∣qs+1|V ∩ L(Fq)| − pr

∣∣.
By the definition of γ and the identity pr = qs+1pr−s−1 + ps, it follows that

∣∣|V (Fq)| − pr
∣∣ ≤ √

2N(qs+1 − 1) + qs+1∣∣|V ∩ L(Fq)| − pr−s−1
∣∣ + ps.

Since V ∩ L is a nonsingular complete intersection of L of dimension r − s − 1 and 
multidegree d, applying (1) we obtain

∣∣|V (Fq)| − pr
∣∣ ≤ √

2N(qs+1 − 1) + b′r−s−1(n− s− 1,d) q
r+s+1

2 + ps.

By the bound N ≤ δpr and elementary calculations, the theorem follows. �
Let V ⊂ Pn be a singular complete intersection as in the statement of Theorem 4.5. 

In [11, Theorem 6.1], the following estimate is obtained:

∣∣|V (Fq)| − pr
∣∣ ≤ b′r−s−1 q

r+s+1
2 + 9 · 2n−r

(
(n− r)d + 3

)n+1
q

r+s
2 , (20)

where d := max1≤i≤n−r di. We observe that the error term in (19) avoids the exponential 
dependency on n present in (20). On the other hand, (20) holds without any condition 
on q, while (19) is valid for q > 2(s + 1)Dr−s−1(D + r − s)δ.



G. Matera et al. / Journal of Number Theory 158 (2016) 54–72 71
4.1. Normal complete intersections

Let V ⊂ Pn be a complete intersection defined over Fq, of dimension r, multidegree d
and singular locus of codimension at least 2. By the case s = r − 2 of Theorem 4.5 we 
conclude that, if q > 2(r − 1)D(D + 2)δ, then∣∣|V (Fq)| − pr

∣∣ ≤ (
b′1(n− r + 1,d) + 2

√
δ + 1

)
qr−

1
2 .

Nevertheless, the condition on q may restrict the range of applicability of this estimate. 
For this reason, the next result provides a further estimate which holds without restric-
tions on q.

Corollary 4.6. Let V ⊂ Pn be a normal complete intersection defined over Fq, of dimension 
r ≥ 2 and multidegree d. Let δ :=

∏n−r
i=1 di and D :=

∑n−r
i=1 (di − 1). Then∣∣|V (Fq)| − pr

∣∣ ≤ 3 r1/2(D + 1)δ3/2 qr−
1
2 . (21)

Proof. Suppose first that q > 2(r−1)D(D+2)δ. Since b′1(n −r+1, d) = (D−2)δ+2 (see, 
e.g., [11, Theorem 4.1]), Theorem 4.5 readily implies the corollary. As a consequence, we 
may assume q ≤ 2(r − 1)D(D + 2)δ. By (5), it follows that |V (Fq)| ≤ δpr. Therefore,∣∣|V (Fq)| − pr

∣∣ ≤ (δ − 1)pr ≤ 2δqr ≤ 3 r1/2(D + 1)δ3/2qr−1/2.

This finishes the proof of the corollary. �
Let V ⊂ Pn be a normal complete intersection as in Corollary 4.6. According 

to [11, Corollary 6.2],∣∣|V (Fq)| − pr
∣∣ ≤ (δ(D − 2) + 2)qr−1/2 + 9 · 2n−r((n− r)d + 3)n+1qr−1, (22)

where d := max1≤i≤n−r di. On the other hand, [5, Corollary 8.3] shows that∣∣|V (Fq)| − pr
∣∣ ≤ (δ(D − 2) + 2)qr−1/2 + 14D2δ2qr−1. (23)

These are the most accurate estimates to the best of our knowledge.
For the sake of comparison, it can be seen that

2n−r((n− r)d + 3)n+1 ≥
(
2(n− r)

)n−r
Dr+1δ.

This shows that for varieties of high dimension, say r ≥ (n + 1)/2, (21) and (23) are 
clearly preferable to (22). In particular, for hypersurfaces the error term in both (21)
and (23) is at most quartic in δ, while that of (22) contains an exponential term δn+1. 
On the other hand, for varieties of low dimension (22) might be more accurate than both 
(21) and (23). In this sense, we may say that (21) and (23) somewhat complement (22). 
Finally, the right-hand side of (21) depends on a lower power of δ than that of (23), 
which may yield a significant improvement in estimates for varieties of large degree.
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