期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:214
Depth-graded motivic Lie algebra
Article
Li, Jiangtao1 
[1] Chinese Acad Sci, Acad Math & Syst Sci, Hua Loo Keng Ctr Math Sci, Beijing, Peoples R China
关键词: Mixed Tate motives;    Period polynomials;    Motivic Lie algebra;   
DOI  :  10.1016/j.jnt.2020.04.022
来源: Elsevier
PDF
【 摘 要 】

In this paper we suggest a way to understand the structure of depth-graded motivic Lie subalgebra generated by the depth one part for the neutral Tannakian category mixed Tate motives over Z. We will show that from an isomorphism conjecture proposed by K. Tasaka we can deduce the F. Brown's matrix conjecture and the nondegeneracy conjecture about depth-graded motivic Lie subalgebra generated by the depth one part. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2020_04_022.pdf 357KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次