期刊论文详细信息
JOURNAL OF NUMBER THEORY | 卷:130 |
Twisted Hecke L-values and period polynomials | |
Article | |
Fukuhara, Shinji1  Yang, Yifan2  | |
[1] Tsuda Coll, Dept Math, Kodaira, Tokyo 1878577, Japan | |
[2] Natl Chiao Tung Univ, Dept Appl Math, Hsinchu 300, Taiwan | |
关键词: Hecke operators; L-values; Modular forms (one variable); Period polynomials; | |
DOI : 10.1016/j.jnt.2009.09.009 | |
来源: Elsevier | |
【 摘 要 】
Let f(1),..., f(d) be an orthogonal basis for the space of cusp forms of even weight 2k on Gamma(0)(N). Let (f(i), s) and L(f(i), chi, s) denote the L-function of f(i) and its twist by a Dirichlet character chi, respectively. In this note, we obtain a trace formula for the values L(f(i), chi, m)<(L(f(i), n))over bar> at integers m and n with 0 < m, n < 2k and proper parity. In the case N = 1 or N = 2, the formula gives us a convenient way to evaluate precisely the value of the ratio L(f, chi, m)/L(f, n) for a Hecke eigenform f. (C) 2009 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jnt_2009_09_009.pdf | 276KB | download |