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In this paper we suggest a way to understand the struc-
ture of depth-graded motivic Lie subalgebra generated by the 
depth one part for the neutral Tannakian category mixed Tate 
motives over Z. We will show that from an isomorphism con-
jecture proposed by K. Tasaka we can deduce the F. Brown’s 
matrix conjecture and the nondegeneracy conjecture about 
depth-graded motivic Lie subalgebra generated by the depth 
one part.
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1. Introduction

Denote by ζN an N -th primitive root of unity. Let MT (Z[ζN ][1/N ]) denote the cat-
egory of mixed Tate motives unramified over Z[ζN ][1/N ]. By the main result of [7], the 
motivic fundamental groupoid of P 1 − {0, μN , ∞} can be realized in the category of 
MT (Z[ζN ][1/N ]).

We call the Lie algebra of the maximal pro-unipotent subgroup of motivic funda-
mental group of MT (Z[ζN ][1/N ]) the motivic Lie algebra of MT (Z[ζN ][1/N ]). From 
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Proposition 2.3 in [7], the motivic Lie algebra of MT (Z[ζN ][1/N ]) is a graded free Lie 
algebra.

Since the Tannakian sub-category generated by the function ring of the motivic fun-
damental groupoid of P 1 − {0, μN , ∞} is MT (Z[ζN ][1/N ] for N = 1 by [3] and for 
N = 2, 3, 4, 6, 8 by [6], from [7] we know that the motivic Lie algebra of MT (Z[ζN ][1/N ])
has an induced depth filtration for N = 1, 2, 3, 4, 6, 8.

In [6] Deligne proved that the depth-graded motivic Lie algebra of MT (Z[ζN ][1/N ]) is 
a free Lie algebra bi-graded by weight and depth for N = 2, 3, 4, 6, 8. While the structure 
of depth-graded motivic Lie algebra of MT (Z) is not fully understood up to now.

Schneps gave the structure of depth-graded motivic Lie algebra of MT (Z) in depth 
two [12]. Goncharov’s work [10] gave the structure of the depth-graded motivic Lie alge-
bra of MT (Z) in depth three. Brown gave some conjectural description of the structure 
of the depth-graded motivic Lie algebra of MT (Z) in all depths in [4].

It is widely believed that the Lie subalgebra of the depth-graded motivic Lie algebra 
generated by the depth one part only has the period polynomial relations in depth two 
among the generators (in [11] we call this statement the nondegeneracy conjecture). In 
fact, this statement follows from Brown’s homological conjecture (see [9]). In this paper, 
we will show that from an isomorphism conjecture of K. Tasaka [13] we can deduce 
Brown’s matrix conjecture and the nondegeneracy conjecture. Thus we reduce the well-
known nondegeneracy conjecture to a purely linear algebra problem which probably is 
easier to handle.

The problems we tackle are purely combinatorial and algebraic. Some standard tech-
niques in Lie algebra also play key roles in establishing our main results.

From the analysis of Section 4 in [9], our results give partial evidence to Brown’s 
homological conjecture about depth-graded motivic Lie algebra in [4]. Since Brown’s 
homological conjecture implies Broadhurst-Kreimer conjecture for motivic multiple zeta 
values, we see that Tasaka’s isomorphism conjecture plays a vital role to understand 
motivic Broadhurst-Kreimer conjecture.

2. Mixed Tate motives and multiple zeta values

2.1. Mixed Tate motives

Denote by MT (Z) the category of mixed Tate motives over Z. The references about 
mixed Tate motives are [5], [7]. MT (Z) is a neutral Tannakian category over Q. Denote 
by π1(MT (Z)) the fundamental group of MT (Z), then we have

π1(MT (Z)) = Gm � U,

where U is pro-unipotent algebraic group with free Lie algebra generated by the formal 
symbol σ2n+1 in weight 2n + 1 for n ≥ 1.
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By [7], the motivic fundamental groupoid of P 1 − {0, 1, ∞} can be realized in the 
category MT (Z).

Denote by 0Π1 the motivic fundamental groupoid of P 1−{0, 1, ∞} from the tangential 
base point −→1 0 at 0 to the tangential base point −→−11 at 1. Its ring of regular functions 
over Q is

O(0Π1) = Q〈e0, e1〉,

where Q〈e0, e1〉 is equipped with the shuffle product.
Denote by xΠy the de-Rham realization of motivic fundamental groupoid of 

P 1\{0, 1, ∞} from x to y, where x, y ∈ {−→1 0, 
−→−11}. We write 

−→1 0, 
−→−11 as 0, 1 respectively 

for short. Denote by G the group of automorphisms of the groupoid xΠy for x, y ∈ 0, 1
which respect to the following structures:

(1) (Groupoid structure) The composition maps

xΠy × yΠz → xΠz

for all x, y, z ∈ {0, 1}.
(2) (Inertia) The automorphism fixes the elements

exp(e0) ∈ 0Π0(Q), exp(e1) ∈ 1Π1(Q),

where e0, e1 respectively denotes the differential dzz , dz
1−z .

From Proposition 5.11 in [7], it follows that xΠy is a G-torsor. We have a natural 
morphism

ϕ : U → G � 0Π1.

From [3] ϕ is injective. Denote by g the corresponding Lie algebra of UdR, we have 
an injective map

i : g → LieG � (L(e0, e1), { , }),

where (L(e0, e1), { , }) is the free Lie algebra generated by e0, e1 with the following Ihara 
Lie bracket

{f, g} = [f, g] + Df (g) −Dg(f)

and Df is a derivation on L(e0, e1) which satisfies Df (e0) = 0, Df (e1) = [e1, f ] for 
f ∈ L(e0, e1).

We denote by h the Lie algebra (L(e0, e1), { , }) for short. There is a natural decreasing 
depth filtration on h defined by

Drh = {ξ ∈ h | dege ξ ≥ r}.

1
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Define the weight grading by the total degree of e0, e1 for the elements of h. From the 
injective map i, there is an induced depth filtration on g, define

dg = ⊕r≥1D
rg/Dr+1g

with induced Lie bracket as depth graded motivic Lie algebra of MT (Z). Denote by dgr
the depth r part of dg. By Théorème 6.8(i) in [7], we have i(σ2n+1) = (ad e0)2n(e1)+
terms of degree ≥ 2 in e1. So dg1 is essentially the Q-linear combinations of σ2n+1 =
(ad e0)2n(e1), n ≥ 1 in h.

Here we give the definition of restricted even period polynomial:

Definition 2.1. For N ≥ 3, the restricted even period polynomial of weight N is the 
polynomial p(x1, x2) of degree N − 2 which satisfies

(i) p(x1, 0) = 0, i.e. p is restricted;
(ii) p(±x1, ±x2) = p(x1, x2), i.e. p is even;
(iii) p(x1, x2) + p(x1 − x2, x1) − p(x1 − x2, x2) = 0.

Denote by PN the set of even restricted period polynomials of weight N .

For a Q-vector space, denote by Lie(V ) the free Lie algebra generated by the vector 
space V. Denote by Lien(V ) elements of Lie(V ) with exactly n occurrences of the formal 
Lie bracket [ , ].

For n ≥ 2, define

α : P ⊗ dg1 ⊗ · · · ⊗ dg1︸ ︷︷ ︸
n−2

→ Lien(dg1)

by

α :
∑

pr,sx
r−1
1 xs−1

2 ⊗ σi1 ⊗ · · · ⊗ σin−2 �→
∑

pr,s[· · · [[σr, σs], σi1 ], · · · , σin−2 ],

where [ , ] is the formal lie bracket. Denote by β : Lien(dg1) → dgn the map that replacing 
the formal Lie bracket by the induced Ihara bracket.

The following conjecture is well-known.

Conjecture 2.2. (nondegeneracy conjecture) For n ≥ 2, the following sequence

P ⊗ dg1 ⊗ · · · ⊗ dg1︸ ︷︷ ︸
n−2

α−→ Lien(dg1)
β−→ dgn

is exact.
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From the main results of [9], Brown’s homological conjecture about dg implies the 
nondegeneracy conjecture.

2.2. Broadhurst-Kreimer conjecture and motivic Lie algebra

In this subsection we will give a short introduction to multiple zeta values and 
Broadhurst-Kreimer conjecture. Then we will explain Brown’s motivic approach to un-
derstand Broadhurst-Kreimer conjecture.

For r ≥ 1, k1, · · · , kr−1 ≥ 1, kr ≥ 2, multiple zeta value ζ(k1, k2, · · · , kr) is defined by

ζ(k1, k2, · · · , kr) =
∑

0<n1<n2<···<nr

1
nk1

1 nk2
2 · · ·nkr

r

.

From the above expression it is clear that products of multiple zeta values are still Q-
linear combinations of multiple zeta values. For ζ(k1, k2, · · · , kr), we call K = k1 + k2 +
· · · + kr and r its weight and depth respectively.

For K > 0, denote by ZK the Q-linear subspace of R which is generated by weight K
multiple zeta values. For r > 0, denote by DrZK the Q-linear subspace of ZK which is 
generated by depth ≤ r, weight K multiple zeta values. The weight and depth structures 
of multiple zeta values are quite mysterious. In fact, Broadhurst and Kreimer [2] proposed 
the following conjecture.

Conjecture 2.3. (Broadhurst, Kreimer) For r > 0, denote by grDr ZK = DrZK/Dr−1ZK , 
then

1 +
∑

K,r>0

(
dimQgr

D
r ZK

)
sKtr = 1 + E(s)t

1 −O(s)t + S(s)t2 − S(s)t4 ,

where

E(s) = s2

1 − s2 ,O(s) = s3

1 − s2 ,S(s) = s12

(1 − s4)(1 − s6) .

Note that S(s) is the generating series of cusp forms of SL2(Z).
Brown [3] defined motivic multiple zeta values. Brown’s definition of motivic multiple 

zeta values is a refinement of Goncharov’s definition (see [5] and [10]) such that the 
motivic version of ζ(2) is non-zero. We review Brown’s definition here. There is a point 
dch ∈ 0Π1(R) which comes from comparison between de-Rham fundamental groupoid 
and Betti fundamental groupoid of P 1 − {0, 1, ∞}. The point dch determines a ring 
homomorphism

dch∗ : Q〈e0, e1〉 → R

which satisfies
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dch∗ (e1(e0)k1−1e1(e0)k2−1 · · · e1(e0)kr−1) = ζ(k1, k2, · · · , kr).

Moreover, dch∗ respects the shuffle product on Q〈e0, e1〉.
Denote by I the largest graded sub-ideal of Ker dch∗ which is stable under the action 

of U . Define H = O(0Π1)/I = Q〈e0, e1〉/I. Then H is the algebra of motivic multiple 
zeta values. Denote by I : Q〈e0, e1〉 → H the natural quotient map. Define per : H → R

to be the map which satisfies per ◦ I = dch∗. Denote by

ζm(k1, k2, · · · , kr) = I
(
e1(e0)k1−1e1(e0)k2−1 · · · e1(e0)kr−1) .

We call ζm(k1, k2, · · · , kr) motivic multiple zeta value. Clearly it satisfies

per (ζm(k1, k2, · · · , kr)) = ζ(k1, k2, · · · , kr).

There are also weight and depth structures on Q〈e0, e1〉. Since the weight structure and 
the depth filtration structure on Q〈e0, e1〉 are both motivic, one can define depth-graded 
motivic multiple zeta values grDr HK . In order to study Broadhurst-Kreimer conjecture 
for motivic multiple zeta values (motivic Broadhurst-Kreimer conjecture), Brown [4]
formulated the following conjecture.

Conjecture 2.4. (Brown) The Lie algebra homology group of dg is

H1(dg,Q) ∼= dg1 ⊕ e(P ), (i)

H2(dg,Q) ∼= P , (ii)

Hi(dg,Q) = 0,∀i ≥ 3, (iii)

where e(P ) ⊆ dg4 and e(P ) ∼= P as Q-vector space.

Based on standard technique in Lie algebra homology theory, Brown showed that 
Conjecture 2.4 implies motivic Broadhurst-Kreimer conjecture. (Actually Brown gave 
explicitly conjectural description about e(P ), but we do not focus on this direction 
in our paper.) From Theorem 4.3 in [9], (i) and (ii) in Conjecture 2.4 are equivalent 
to the statement that the only relations among the generators of dg are the period 
polynomial relations among σ2n+1, n ≥ 1 in depth 2. Thus Conjecture 2.4 implies the 
nondegeneracy conjecture. Beware that dg also has generators in depth ≥ 4. As a result, 
Brown’s homological conjecture is much stronger than the nondegeneracy conjecture. 
From Theorem 4.3 in [9], we know that the nondegeneracy conjecture is the first step to 
prove Brown’s homological conjecture.
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3. Universal enveloping algebra

Denote by Uh the universal enveloping algebra of h and denote by Q〈e0, e1〉 the non-
commutative polynomial ring in symbol e0, e1. From Proposition 5.9 in [7] we know that 
Uh is isomorphic to Q〈e0, e1〉 as a vector space. But the new multiplication structure ◦ on 
Q〈e0, e1〉 which is transformed from Uh is rather subtle. It’s not the usual concatenation 
product.

Denote by grrDQ〈e0, e1〉 the elements of Q〈e0, e1〉 with exactly r occurrences of e1. 
We have the following map:

ρ :grrDQ〈e0, e1〉 → Q[y0, y1, · · · , yr],
ea0
0 e1e

a1
0 e1 · · · e1e

ar
0 �→ ya0

0 ya1
1 · · · yar

r .

The map ρ is the polynomial representation of Q〈e0, e1〉 defined by Brown. The polyno-
mial representation of non-commutative series has been used by Brown, Racinet, Ecalle 
and so on for the study of multiple zeta values.

Brown [4] introduced a Q-bilinear map ◦ : Q〈e0, e1〉 ⊗Q Q〈e0, e1〉 → Q〈e0, e1〉 which 
in the polynomial representation can be written as

f◦g(y0, · · · ,yr+s) =
s∑

i=0
f(yi, yi+1, · · · , yi+r)g(y0, · · · , yi, yi+r+1, · · · , yr+s)+

(−1)degf+r
s∑

i=1
f(yi+r, · · · , yi+1, yi)g(y0, · · · , yi−1, yi+r, · · · , yr+s)

for f ∈ Q[y0, · · · , yr] = ρ(grrDQ〈e0, e1〉), g ∈ Q[y0, · · · , ys] = ρ(grsDQ〈e0, e1〉).
Since by the general theory of Lie algebra, the natural action of h on Uh is the form 

(a, b1 ⊗ b2 ⊗ · · · br) �→ a ⊗ b1 ⊗ · · · ⊗ br in Uh for a, b1, · · · , br ∈ h. By Proposition 2.2 in 
[4], we have

a1 ◦ a2 ◦ · · · ◦ ar = a1◦(a2◦(· · · (ar−1◦ar) · · · ))

for ai ∈ h ⊆ Q〈e0, e1〉, 1 ≤ i ≤ r − 1, ar ∈ Q〈e0, e1〉.
The above formula is still not enough to give a very clear picture of the new multipli-

cation ◦ on Q〈e0, e1〉. But it is enough for our purpose.
We first introduce some notation from Tasaka [13]. Denote by

SN,r = {(n1, ..., nr) ∈ Zr | n1 + ... + nr = N,n1, ..., nr ≥ 3 : odd}.

We write −→m = (m1, ..., mr) for short, while

VectN,r = {(an1,...,nr
)−→n∈S | an1,...,nr

∈ Q}.

N,r
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For a matrix P =
(
p

(
m1, ...,mr

n1, ..., nr

))
−→m∈SN,r−→n∈SN,r

, the action of P on a = (am1,...,mr
)−→m∈SN,r

means

aP =

⎛
⎝ ∑

−→m∈SN,r

am1,...,mr
p

(
m1, ...,mr

n1, ..., nr

)⎞⎠
−→n∈SN,r

Denote by PN,r the Q-vector space spanned by the set

{xn1−1
1 · · ·xnr−1

r | (n1, ..., nr) ∈ SN,r}.

Obviously there is an isomorphism

π : PN,r −→ VectN,r∑
−→n∈SN,r

an1,...,nr
xn1−1

1 · · ·xnr−1
r �−→ (an1,...,nr

)−→n∈SN,r
.

Denote by

WN,r = {p ∈ PN,r | p(x1, ..., xr) = p(x2 − x1, x2, x3, ..., xr) − p(x2 − x1, x1, x3, ..., xr)}.

Denote by

e

(
m1, ...,mr

n1, ..., nr

)
= δ

(
m1, ...,mr

n1, ..., nr

)
+

r−1∑
i=1

δ

(
m2, ...,mi,mi+2, ...,mr

n1, ..., ni−1, ni+2, ..., nr

)
bm1
ni,ni+1

,

where the bmn,n′ are defined by

bmn,n′ = (−1)n
(
m− 1
n− 1

)
+ (−1)n

′−m

(
m− 1
n′ − 1

)

and δ
(
m1, ...,mr

n1, ..., nr

)
= 1 if −→m = −→n , δ

(
m1, ...,mr

n1, ..., nr

)
= 0 if −→m �= −→n .

The matrix E(r−i)
N,r , i = 0, 1, ..., r − 2 are defined by

E
(r−i)
N,r =

(
δ

(
m1, ...,mi

n1, ..., ni

)
e

(
mi+1, ...,mr

ni+1, ..., nr

))
−→m∈SN,r−→n∈SN,r

.

We write E(r)
N,r as EN,r. Denote by

CN,r = E
(2)
N,r · E

(3)
N,r · · ·E

(r−1)
N,r ·EN,r

for r ≥ 2. Denote by CN,r the one row, one column matrix 1 for N > 1, odd, r = 1.
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By [1], we know π(WN,2) = Ker EN,2. For r ≥ 3, K. Tasaka proved that

(π(WN,r))(EN,r − IN,r) ⊆ Ker EN,r,

where IN,r denotes the identity matrix
(
δ

(
m1, ...,mr

n1, ..., nr

))
−→m∈SN,r−→n∈SN,r

.

Furthermore, K. Tasaka proposed the following conjecture.

Conjecture 3.1. (Tasaka’s conjecture) The linear map

η : π(WN,r) → Ker EN,r

a−→m �→ (a−→m)(EN,r − IN,r)

is an isomorphism.

In [13], K. Tasaka suggested a way to prove the injectivity in the above conjecture. 
But there is a gap in his proof. We prove the injectivity for r = 3 in [11].

In [4], F. Brown proposed the following conjecture

Conjecture 3.2. (Brown’s matrix conjecture) The rank of the matrices CN,r satisfy

1 +
∑

N,r>0
rank CN,rx

Nyr = 1
1 −O(x)y + S(x)y2 .

Now we can state our main result.

Theorem 3.3. Tasaka’s conjecture implies Brown’s matrix conjecture and Brown’s matrix 
conjecture implies nondegeneracy conjecture.

From the discussion in Section 2, we hope that Theorem 3.3 will shed light on motivic 
Broadhurst-Kreimer conjecture.

4. Calculation

In this section we will prove Theorem 3.3. In fact we will prove a little bit more.
The strategy is firstly we use Poincaré-Birkhoff-Witt theorem to give the nondegen-

eracy conjecture a reformulation in the context of universal enveloping algebra. Then 
by some dimension counting trick we show that Brown’s matrix conjecture implies the 
nondegeneracy conjecture. At last by explicit calculation of the polynomial representa-
tion of the motivic action on universal enveloping algebra, it will be clear that Tasaka’s 
isomorphism conjecture implies Brown’s matrix conjecture.
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We will need the following result about Lie algebra.

Proposition 4.1. Let L be a Lie algebra over Q, denote by UL its universal envelope 
algebra. M is a Lie ideal in L, denote by UL(M) the two-sided ideal generated by M in 
UL. Then we have

L ∩ (UL(M)) = M.

Proof. We have the following commutative diagram

0 M L L/M 0

0 UL(M) UL U(L/M) 0

The first row and second row are short exact sequences. By Poincaré-Birkhoff-Witt 
theorem in Lie algebra, we know that the three vertical maps are all injective. L ∩
(UL(M)) = M follows by diagram chasing. �

Recall the injective Lie algebra homomorphism in Section 2

i : g → h.

Since the Lie algebra h is bigraded by weight and depth, the map i induces a natural 
injective Lie algebra homomorphism

i : dg → h.

The maps i and i induce the natural injective algebra homomorphisms on enveloping 
algebra

Ui : Ug → Uh = (Q〈e0, e1〉, ◦)

and

Ui : Udg → Uh = (Q〈e0, e1〉, ◦).

As g is a free Lie algebra generated by elements σ2n+1 for n ≥ 1 in weight 2n + 1. We 
have Ug = Q〈σ3, σ5, · · · , σ2n+1, · · · 〉 (the non-commutative polynomial ring generated 
by the symbol σ2n+1 for n ≥ 1) with the usual concatenation product.

For r = 0, denote by Lr the rational field Q. For r ≥ 1, denote by Lr the Q-linear 
space generated by elements

σn1 ◦ σn2 ◦ · · · ◦ σnr
= (ad e0)n1−1e1 ◦ (ad e0)n2−1e1 ◦ · · · ◦ (ad e0)nr−1e1
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in Uh for ni ≥ 3, odd, 1 ≤ i ≤ r.
Define the map Br : L1 ⊗Q Lr−1 → Lr by

Br(σn1 ⊗ (σn2 ◦ · · · ◦ σnr
)) = σn1 ◦ σn2 ◦ · · · ◦ σnr

and define the map Ar : P ⊗Q Lr−2 → L1 ⊗Q Lr−1 by

Ar : ((
∑

n1,n2≥3,odd
pn1,n2x

n1−1
1 xn2−1

2 ) ⊗ (σn3 ◦ · · · · · · ◦ σnr
))

=
∑

n1,n2≥3,odd
pn1,n2σn1 ⊗ (σn2 ◦ · · · ◦ σnr

).

We have the following lemma

Lemma 4.2. The nondegeneracy conjecture for all r ≥ 2 is equivalent to that the following 
sequence is exact

0 → P ⊗Q Lr−2
Ar−−→ L1 ⊗Q Lr−1

Br−−→ Lr → 0

for all r ≥ 2.

Proof. If

x =
∑

−→n∈SN,r

an1,··· ,nr
σn1 ⊗ (σn2 ◦ · · · ◦ σnr

) ∈ Ker Br, (1)

then by definition we will have

∑
−→n∈SN,r

an1,··· ,nr
σn1σn2 · · ·σnr

∈ Dr+1Ug = Dr+1Q〈σ3, · · · , σ2n+1, · · · 〉. (2)

Since Ug is a non-commutative polynomial ring, from formula (1) and (2) we have

∑
−→n∈SN,r

an1,··· ,nr
σn1σn2 · · ·σnr

=
r∑

i=2

∑
−→m∈SN,r

bim1,··· ,mi,mi+1,··· ,mr
[[· · · [σm1 , σm2 ], · · · ], σmi

]σmi+1 · · ·σmr

for some bi−→m , −→m ∈ SN,r and

∑
(m ,··· ,m )∈S

bim1,··· ,mi,mi+1,··· ,mr
[[· · · [σm1 , σm2 ], · · · ], σmi

] ⊆ Di+1g
1 i N−mi+1−···−mr
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On one hand, if the nondegeneracy conjecture is true for all depth, we will have

∑
−→n∈SN,r

an1,··· ,nr
σn1 ⊗ σn2 ⊗ · · · ⊗ σnr

⊆ P ⊗ (L1)⊗r−2 + L1 ⊗ P ⊗ L⊗r−3
1 + · · · + L⊗r−3

1 ⊗ P ⊗ L1 + (L1)⊗r−2 ⊗ P .

From the definition of Lr and period polynomial relations of dg in depth two, we have 
x ⊆ Im Ar, i.e. Im Ar = Ker Br.

Since it’s obvious that Br is surjective. While Ar is injective follows from Im Ar =
Ker Br in depth r − 1 and the fact that P ⊗ L1 ∩ L1 ⊗ P = {0}. We deduce that from 
the nondegeneracy conjecture for all depth we will have the short exact sequence for all 
r ≥ 2.

On the other hand, if the sequence is exact for all r ≥ 2, let

x =
∑

−→m∈SN,r

bm1,··· ,mr
{{· · · {σm1 , σm2}, · · · }, σmr

} = 0 (3)

in dgr, where { , } denotes the induced Ihara Lie bracket on dg.
Then

x =
∑

−→m∈SN,r

bm1,m2,··· ,mr
[[· · · [σm1 , σm2 ], · · · ], σmr

] ∈ grr+1
D

Ug, (4)

where [ , ] denotes the formal Lie bracket on the non-commutative polynomial ring Ug. 
Rewrite x as

x =
∑

−→m∈SN,r

am1,m2,··· ,mr
σm1σm2 · · ·σmr

. (5)

Denote

xd =
∑

−→m∈SN,r

am1,m2,··· ,mr
σm1 ⊗ (σm2 ◦ σm3 ◦ · · · ◦ σmr

) ∈ L1 ⊗Q Lr−1,

then from (3), (4) and (5), we have xd ∈ Ker Br. Since Im Ar = Ker Br, we have

xd =
∑

−→m∈SN,r

cm1,m2,m3,··· ,mr
σm1 ⊗ (σm2 ◦ σm3 ◦ · · · ◦ σmr

)

and p =
∑

m1,m2≥3,odd
cm1,m2,m3,··· ,mr

xm1−1
1 xm2−1

2 ∈ P . Let ι : P → g be the map

ι :
∑

pr,sx
r−1
1 xs−1

2 �→
∑

pr,s[σr, σs].

r,s≥3, odd r,s≥3, odd
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From Im Ai = Ker Bi for i = 2, · · · , r, we deduce inductively that

x ∈ Ug(ι(P )),

where Ug(ι(P )) means the two-sided ideal generated by ι(P ) in Ug. By Proposition 4.1, 
x belongs to the Lie ideal generated by ι(P ) in g. So from the short exact sequence for 
all depth we can deduce the nondegeneracy conjecture in all depth. �

The following lemma reduces the nondegeneracy conjecture to a dimension conjecture 
of Lr in each weight N for all r.

Lemma 4.3. Denote by LN,r the weight N part of Lr, then the formula

1 +
∑

N,r>0
dimQ LN,rx

Nyr = 1
1 −O(x)y + S(x)y2

is equivalent to that the following sequence is exact

0 → P ⊗Q Lr−2
Ar−−→ L1 ⊗Q Lr−1

Br−−→ Lr → 0

for all r ≥ 2, where O(x) = x3

1−x2 , S(x) = x12

(1−x4)(1−x6) .

Proof. ′ ⇒′ It’s clear that Br is surjective and Im Ar ⊆ Ker Br for all r ≥ 2. Since
∑
N>0

dimQLN,1x
N = O(x),

from the dimension formula we have

dimQ LN,rx
N −

∑
N>0

dimQ LN,r−1 ·O(x) +
∑
N>0

dimQ LN,r−2 · S(x) = 0 (6)

for all r ≥ 2.
It’s obvious that A2 is injective, B2 is surjective and Im A2 ⊆ Ker B2. So from formula 

(6) in r = 2, we have Im A2 = Ker B2.
For r ≥ 3, denote by

I : L1 ⊗ L1 ⊗ L1 ⊗ Lr−3 → L1 ⊗ L1 ⊗ Lr−2,

σr1 ⊗ σr2 ⊗ σr3 ⊗ a → σr1 ⊗ σr2 ⊗ (σr3 ◦ a).

Inductively, from Im Ar−1 = Ker Br−1, we have

Ker Ar ⊆ P ⊗ ∩I(L1 ⊗ P ⊗ Lr−3)

⊆ I ((P ⊗ L ∩ L ⊗ P ) ⊗ L ) .
1 1 r−3
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From Goncharov’s result P ⊗Q L1 ∩L1 ⊗Q P = {0}, we can deduce that Ar is injective. 
Then Im Ar = Ker Br follows from formula (6) and the fact that Ar is injective, Br is 
surjective and Im Ar ⊆ Ker Br.

′ ⇐′ It’s clear that

∑
N>0

dimQLN,1x
N = O(x).

Then from the short exact sequence we have

dimQ LN,rx
N −

∑
N>0

dimQ LN,r−1 ·O(x) +
∑
N>0

dimQ LN,r−2 · S(x) = 0

for all r ≥ 2. So

1 +
∑

N,r>0
dimQ LN,rx

Nyr = 1
1 −O(x)y + S(x)y2 . �

Remark 4.4. In fact, if we only know that

1 +
∑

N,r>0
dimQ LN,rx

Nyr ≥ 1
1 −O(x)y + S(x)y2 ,

where ≥ means the coefficient of the term xNyr in the left side is bigger than the 
corresponding coefficient in the right side for all N, r > 0, then we can still deduce the 
short exact sequence exactly the same way as in the proof of Lemma 4.3.

Now we investigate the polynomial representation of LN,r. From the main result of 
Section 3, we have

ρ(σm1 ◦ σm2 ◦ · · · ◦ σmr
)

= (y1 − y0)m1−1◦((y1 − y0)m2−1◦(· · · ((y1 − y0)mr−1−1◦(y1 − y0)mr−1)))

for −→m = (m1, m2, · · · , mr) ∈ SN,r.
For −→n = (n1, n2, · · · , nr) ∈ SN,r, the coefficient of yn1−1

1 yn2−1
2 · · · ynr−1

r in ρ(σm1 ◦
σm2 ◦ · · · ◦ σmr

) is

c

(
m1,m2, · · · ,mr

n1, n2, · · · , nr

)
,

where c
(
m1,m2,··· ,mr

n1,n2,··· ,nr

)
is the (m1, m2, · · · , mr)-th row, (n1, n2, · · · , nr)-th column term of 

the matrix CN,r.
Now we have
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Proposition 4.5. The following map

η̃ : WN,r → VectN,r

(am1,··· ,mr
)−→m∈SN,r

�→

⎛
⎝ ∑

−→m∈SN,r

am1,··· ,mr
δ

(
m1

n1

)
e

(
m2, · · · ,mr

n2, · · · , nr

)⎞⎠
−→n∈SN,r

satisfies η̃(WN,r) ⊆ Ker EN,r. Furthermore, η̃(a) + η(a) = 0 for

a = (am1,··· ,mr
)−→m∈SN,r

∈ WN,r.

Before we go to the long proof of Proposition 4.5, we explain the key observation 
firstly. Roughly speaking η̃(WN,r) ⊆ Ker EN,r follows from the fact that generators in 
dg1 have period polynomial relations among them. Thus the linear space η̃(WN,r), if 
viewed as sub-space of dg1 ⊗ Udg, has trivial images in Uh, i.e. η̃(WN,r) ⊆ Ker EN,r. 
While η̃(a) + η(a) = 0 essentially comes from anti-symmetry of even restricted period 
polynomials.

Proof of Proposition 4.5. Consider the natural action of dg on Uh = (Q〈e0, e1〉, ◦). By 
the main results of Section 3, we know that

∑
(m2,··· ,mr)∈SN−n1,r−1

an1,m2,··· ,mr
e

(
m2, · · · ,mr

n2, · · · , nr

)

is the coefficient of yn2−1
2 · · · ynr−1

r in the polynomial representation of

∑
(m2,··· ,mr)∈SN−n1,r−1

an1,m2,··· ,mr
σm2 ◦ (e1e

m3−1
0 e1 · · · e1e

mr−1
0 ),

for (n2, · · · , nr) ∈ SN−n1,r−1. Furthermore,

∑
−→m,−→n∈SN,r

am1,m2,··· ,mr
δ

(
m1

n1

)
e

(
m2, · · · ,mr

n2, · · · , nr

)
e

(
n1, n2, · · · , nr

k1, k2, · · · , kr

)

is the coefficient of yk1−1
1 yk2−1

2 · · · ykr−1
r in the polynomial representation of

∑
−→

am1,m2,··· ,mr
σm1 ◦ σm2 ◦ (e1e

m3−1
0 e1 · · · e1e

mr−1
0 ).
m∈SN,r



J. Li / Journal of Number Theory 214 (2020) 38–55 53
If a = (am1,··· ,mr
)−→m∈SN,r

∈ WN,r, then

∑
−→m∈SN,r

am1,m2,··· ,mr
σm1 ◦ σm2 ◦ (e1e

m3−1
0 e1 · · · e1e

mr−1
0 )

= 1
2

∑
−→m∈SN,r

am1,m2,··· ,mr
(σm1 ◦ σm2 − σm2 ◦ σm1) ◦ (e1e

m3−1
0 e1 · · · e1e

mr−1
0 )

= 1
2

∑
−→m∈SN,r

am1,m2,··· ,mr
{σm1 , σm2} ◦ (e1e

m3−1
0 e1 · · · e1e

mr−1
0 )

= 0.

So we have

∑
−→m,−→n∈SN,r

am1,m2,··· ,mr
δ

(
m1

n1

)
e

(
m2, · · · ,mr

n2, · · · , nr

)
e

(
n1, n2, · · · , nr

k1, k2, · · · , kr

)
= 0,

i.e. η̃(WN,r) ⊆ Ker EN,r.
Similarly, in order to prove η̃(a) + η(a) = 0 for a = (am1,··· ,mr

)−→m∈SN,r
∈ WN,r, it 

suffices to show that the coefficient of the term yn1−1
1 yn2−1

2 · · · ynr−1
r in the polynomial 

representation of

−
∑

−→m∈SN,r

am1,m2,··· ,mr
[σm1 ◦ (e1e

m2−1
0 · · · e1e

mr−1
0 ) − e1e

m1−1
0 e1e

m2−1
0 · · · e1e

mr−1
0 ]

is equal to the coefficient of the term yn2−1
1 yn3−1

2 · · · ynr−1
r−1 in the polynomial represen-

tation of
∑

(m2,m3,··· ,mr)∈SN−n1,r−1

an1,m2,··· ,mr
σm2 ◦ (e1e

m3−1
0 · · · e1e

mr−1
0 ) (7)

for all −→n ∈ SN,r. This follows from direct calculation of motivic Galois action and 
standard properties of period polynomial. �
Remark 4.6. From Proposition 4.5 we obtain Tasaka’s result [13]

η(WN,r) ⊆ Ker (EN,r − IN,r)

immediately. See the proof Proposition 5.5 in [11] for a proof of the fact

η̃(a) + η(a) = 0

based on an explicit matrix calculation. Also see the proof of Lemma 4.9 in [8] for a 
proof based on polynomial representation.
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Now we can prove our main results.

Proof of Theorem 3.3. From linear algebra, we have

Ker CN,r
∼= Ker (E(2)

N,rE
(3)
N,r · · ·E

(r−1)
N,r ) ⊕ Im (E(2)

N,rE
(3)
N,r · · ·E

(r−1)
N,r ) ∩ Ker EN,r. (10)

By the definition of CN,r, view CN,r as linear transformation on the vector space VectN,r, 
then we have

Ker(E(2)
N,rE

(3)
N,r · · ·E

(r−1)
N,r ) ∼=

⊕
m>1,odd

Ker CN−m,r−1. (11)

If Conjecture 3.1 (Tasaka conjecture) is true, then from Proposition 4.5 and the fact

Im (E(2)
N,rE

(3)
N,r · · ·E

(r−2)
N,r ) ∩WN,r

∼=
⊕

m>0,even
Pm ⊗Q Im CN−m.r−2

we have

Im (E(2)
N,rE

(3)
N,r · · ·E

(r−1)
N,r ) ∩ Ker EN,r

∼=
⊕

m>0,even
Pm ⊗Q Im CN−m,r−2. (12)

From formula (10), (11) and (12), we have
∑

N,r>0
dimQKer CN,rx

Nyr =
∑

N,r>0
dimQKer CN,rx

Nyr ·O(x)y

+ S(x)y2 · (1 +
∑

N,r>0
dimQIm CN,rx

Nyr).
(13)

From formula (13), we have

1 +
∑

N,r>0
rank CN,rx

Nyr = 1
1 −O(x)y + S(x)y2 . (14)

The polynomial representation of element σm1 ◦ σm2 ◦ · · · ◦ σmr
in LN,r for −→m ∈ SN,r

is

(y1 − y0)m1−1◦((y1 − y0)m2−1◦(· · · ◦(y1 − y0)mr−1) · · · )). (15)

The coefficient of the term yn1−1
1 yn2−1

2 · · · ynr−1
r in the formula (15) is the (m1, m2, · · · ,

mr)-th row, the (n1, n2, · · · , nr)-th column element of the matrix CN,r. So from formula 
(14) we have

1 +
∑

dimQ LN,rx
Nyr ≥ 1

1 −O(x)y + S(x)y2 .

N,r>0
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From Remark 4.4 and Lemma 4.2, we have the nondegeneracy conjecture. �
Remark 4.7. Formula (12) is essentially the Conjecture 4.12 in [8], in the above proof we 
actually show that formula (12) is a corollary of Tasaka’s isomorphism conjecture. See 
[11] for the application of nondegeneracy conjecture to motivic multiple zeta values.
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