期刊论文详细信息
JOURNAL OF NUMBER THEORY | 卷:202 |
On a sum involving the Euler function | |
Article | |
Bordelles, Olivier1  Dai, Lixia2  Pan, Hao4  Shparlinski, Igor E.3  | |
[1] 2 Allee Combe, F-43000 Aiguilhe, France | |
[2] Nanjing Normal Univ, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R China | |
[3] Univ New South Wales, Dept Pure Math, Sydney, NSW 2052, Australia | |
[4] Nanjing Univ Finance & Econ, Sch Appl Math, Nanjing 210046, Jiangsu, Peoples R China | |
关键词: Euler function; Integer part; Reciprocals; Exponent pair; | |
DOI : 10.1016/j.jnt.2019.01.006 | |
来源: Elsevier | |
【 摘 要 】
We obtain reasonably tight upper and lower bounds on the sum Sigma(n <= x) phi (left perpendicularx/nright perpendicular), involving the Euler functions phi and the integer parts LxInd of the reciprocals of integers. For slower growing arithmetic functions f we obtain asymptotic formulas for similar sums of f (left perpendicularx/rright perpendicular). These are analogues of a series of previous results for sequences involving the integer part functions such Beatty and Piatetski-Shapiro sequences. (C) 2019 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jnt_2019_01_006.pdf | 361KB | download |