期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:202
On a sum involving the Euler function
Article
Bordelles, Olivier1  Dai, Lixia2  Pan, Hao4  Shparlinski, Igor E.3 
[1] 2 Allee Combe, F-43000 Aiguilhe, France
[2] Nanjing Normal Univ, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R China
[3] Univ New South Wales, Dept Pure Math, Sydney, NSW 2052, Australia
[4] Nanjing Univ Finance & Econ, Sch Appl Math, Nanjing 210046, Jiangsu, Peoples R China
关键词: Euler function;    Integer part;    Reciprocals;    Exponent pair;   
DOI  :  10.1016/j.jnt.2019.01.006
来源: Elsevier
PDF
【 摘 要 】

We obtain reasonably tight upper and lower bounds on the sum Sigma(n <= x) phi (left perpendicularx/nright perpendicular), involving the Euler functions phi and the integer parts LxInd of the reciprocals of integers. For slower growing arithmetic functions f we obtain asymptotic formulas for similar sums of f (left perpendicularx/rright perpendicular). These are analogues of a series of previous results for sequences involving the integer part functions such Beatty and Piatetski-Shapiro sequences. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2019_01_006.pdf 361KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次