期刊论文详细信息
JOURNAL OF NUMBER THEORY | 卷:236 |
On a generalisation of Bordelles-Dai-Heyman-Pan-Shparlinski's conjecture | |
Article | |
Ma, J.1  Wu, J.2  Zhao, F.3  | |
[1] Jilin Univ, Sch Math, Changchun 130012, Peoples R China | |
[2] Univ Paris Est Creteil, Lab Anal & Math Appl, CNRS LAMA 8050, F-94010 Creteil, France | |
[3] North China Univ Water Resources & Elect Power, Dept Math & Informat Sci, Jinshui E Rd, Zhengzhou 450046, Henan, Peoples R China | |
关键词: Euler totient function; Integral part; Exponential sums; Exponent pair; | |
DOI : 10.1016/j.jnt.2021.07.024 | |
来源: Elsevier | |
【 摘 要 】
Let f be an arithmetic function satisfying some simple conditions. The aim of this paper is to establish an asymptotical formula for the quantity & nbsp;S-f(x) :=& nbsp; sigma(n zeta x)& nbsp;f([x/n])& nbsp;for x -> infinity, where [t] is the integral part of the real number t. This generalises some recent results of Bordelles, Dai, Heyman, Pan & Shparlinski and of Zhai (f = phi = the Euler function), and of Zhao & Wu (f = sigma = the sum-of-divisors function). (C)& nbsp;2021 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jnt_2021_07_024.pdf | 502KB | download |