期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:236
On a generalisation of Bordelles-Dai-Heyman-Pan-Shparlinski's conjecture
Article
Ma, J.1  Wu, J.2  Zhao, F.3 
[1] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
[2] Univ Paris Est Creteil, Lab Anal & Math Appl, CNRS LAMA 8050, F-94010 Creteil, France
[3] North China Univ Water Resources & Elect Power, Dept Math & Informat Sci, Jinshui E Rd, Zhengzhou 450046, Henan, Peoples R China
关键词: Euler totient function;    Integral part;    Exponential sums;    Exponent pair;   
DOI  :  10.1016/j.jnt.2021.07.024
来源: Elsevier
PDF
【 摘 要 】

Let f be an arithmetic function satisfying some simple conditions. The aim of this paper is to establish an asymptotical formula for the quantity & nbsp;S-f(x) :=& nbsp; sigma(n zeta x)& nbsp;f([x/n])& nbsp;for x -> infinity, where [t] is the integral part of the real number t. This generalises some recent results of Bordelles, Dai, Heyman, Pan & Shparlinski and of Zhai (f = phi = the Euler function), and of Zhao & Wu (f = sigma = the sum-of-divisors function). (C)& nbsp;2021 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2021_07_024.pdf 502KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次