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ON A GENERALISATION OF
BORDELLÈS-DAI-HEYMAN-PAN-SHPARLINSKI’S CONJECTURE

J. MA, J. WU & F. ZHAO

Abstract. Let f be an arithmetic function satisfying some simple conditions. The aim of
this paper is to establish an asymptotical formula for the quantity

Sf (x) :=
∑
n6x

f
([x
n

])
for x→∞, where [t] is the integral part of the real number t. This generalises some recent
results of Bordellès, Dai, Heyman, Pan & Shparlinski (f = ϕ = the Euler function), and of
Zhao & Wu (f = σ = the sum-of-divisors function).

1. Introduction

As usual, we write

ϕ(n) := the Euler function,

σ(n) := the sum-of-divisors function.

Denote by [t] the integral part of the real number t, by log2 the iterated logarithm and by γ
the Euler constant, respectively. Motivated by the following well-known results∑

n6x

[x
n

]
= x log x+ (2γ − 1)x+O(x1/3),(1.1)

∑
n6x

ϕ(n) =
3

π2
x2 +O(x(log x)2/3(log2 x)4/3),(1.2)

for x → ∞, Bordellès, Dai, Heyman, Pan and Shparlinski [2] proposed to investigate the
asymptotical behaviour of the summation function

Sϕ(x) :=
∑
n6x

ϕ
([x
n

])
,

as x → ∞. With the help of Bourgain’s new exponent pair [3], they proved the following
inequalities

(1.3)
(2629

4009
· 6

π2
+ o(1)

)
x log x 6 Sϕ(x) 6

(2629

4009
· 6

π2
+

1380

4009
+ o(1)

)
x log x

and conjectured that

(1.4) Sϕ(x) ∼ 6

π2
x log x as x→∞.

The bounds in (1.3) have been sharpened by Wu [13] using the van der Corput inequality [5]
simply. Very recently Zhai [15] resolved the conjecture (1.4) by combining the Vinogradov
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2 J. MA, J. WU & F. ZHAO

method with an idea of Goswami [4]. More precisely, he established the asymptotic formula

(1.5) Sϕ(x) =
6

π2
x log x+O

(
x(log x)2/3(log2 x)1/3

)
and showed that the error term in (1.5) is Ω(x). Denote by µ(n) the Möbius function. Define
id(n) = n and 1(n) = 1 for all integers n > 1. Then ϕ = id ∗ µ and σ = id ∗ 1. In Zhai’s
proof of (1.5), the well-known inequality

(1.6)
∑
n6x

µ(n)� x exp
{
− c
√

log x
}

(x > 1)

plays a key role, where c > 0 is a positive constant. Clearly a such bound is not true for 1.
Since ϕ(n) and σ(n) often have similar properties, it seems interesting to study the analogy
of (1.5) for σ(n). By refining Zhai’s approach, Wu and Zhao [16] succeeded to prove that

(1.7) Sσ(x) :=
∑
n6x

σ
([x
n

])
=
π2

6
x log x+O

(
x(log x)2/3(log2 x)4/3

)
and that the error term in (1.7) also is Ω(x) as x→∞.

In this paper, we would like to consider a general case of (1.5) and (1.7), and to give a
uniform treatment. Inspiring some ideas from Liu and Wu [8], let r1, r2, r3 be three increasing
functions defined on [1,∞) such that

(1.8) 1 6 rj(x)� xηj (j = 1, 2, 3), r3(x)→∞

for x > 1, where ηj ∈ (0, 1) are constants. Let f be an arithmetic function and let g be
determined by the relation f = id ∗ g. We propose the following conditions on f :

|f(n)| � nr1(n) (n > 1),(1.9) ∑
n6x

|g(n)| � xr2(x) (x > 1),(1.10) ∑
n6x

g(n) = Dgx+O(x/r3(x)) (x > 1),(1.11)

where Dg is a constant (eventually equal to 0).

Our main result is as follows.

Theorem 1.1. (i) Let f be an arithmetic function satisfying the conditions (1.9), (1.10) and
(1.11). Then for any constant A > 0, we have

(1.12) Sf (x) :=
∑
n6x

f
([x
n

])
= Cfx log x+OA(xR(x, z)),

uniformly for x > 3 and 1 6 z 6 exp{A1/3(log x)2/3(log2 x)1/3}, where Cf :=
∑∞

n=1
g(n)
n2 and

(1.13) R(x, z) := (log x)2/3(log2 x)1/3r1(x) +
r2(x/z)

(log x)A
+
r2(x/z) log x

z
+

z log x

r3(
√
x/z)

·

Here the implied constant depends on A only.
(ii) Let f be an arithmetic function satisfying the condition (1.11) and there is a positive

constant c < 1 such that one of the following two conditions

|f(p− 1)| < cf(1)p or |f(p− 1)| > c−1f(1)p > 0

holds for an infinity of primes p. Then the error term of (1.12) is Ω(x).
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Remark 1. When the sizes of rj(x) (1 6 j 6 3) are conveneble, (1.12) of Theorem 1.1 gives,
with a suitable choice of parameter z, an asymptotic formula of Sf (x). Otherwise we have
an upper bound.

As applications of Theorem 1.1, we consider four special arithmetic functions:

– the Euler function ϕ(n);

– the alternating sum-of-divisors function β(n);

– the sum-of-divisors function σ(n);

– the Dedekind function Ψ(n).

Let Ω(n) be the number of all prime factors of n, then the Liouville function is defined by
λ(n) := (−1)Ω(n). We have the following relations:

(1.14) ϕ = id ∗ µ, β = id ∗ λ, σ = id ∗ 1, Ψ = id ∗ µ2.

We have the following corollaries.

Corollary 1.2. (i) The asymptotic formula (1.5) is true. The error term of (1.5) is Ω(x).
(ii) For x→∞, we have

(1.15)
∑
n6x

β
([x
n

])
=
π2

15
x log x+O

(
x(log x)2/3(log2 x)1/3

)
.

The error term of (1.15) is Ω(x).

Corollary 1.3. (i) The asymptotic formula (1.7) is true. The error term of (1.7) is Ω(x).
(ii) For x→∞, we have

(1.16)
∑
n6x

Ψ
([x
n

])
=

15

π2
x log x+O

(
x(log x)2/3(log2 x)4/3

)
.

The error term of (1.16) is Ω(x).

Remark 2. (i) Different from [15], our proof of (1.5) does not need Theorem 1 of Liu [7]:∑
n6x

ϕ(n) =
3

π2
x2 +O

(
x(log x)2/3(log2 x)1/3

)
,

which is a slight improvement of Walfisz’ asymptotical formula (1.2). (see [12, Chapter 7])
(ii) Some related works can be found in [1, 9, 10, 14, 17].

2. Some lemmas

2.1. Two preliminary lemmas.

This subsection is devoted to cite two lemmas. The first one is [16, Lemma 2.3] (see also
[11, Lemma 2.6]), which is a consequence of Karatsuba’s estimate for trigonometric sums by
Vinogradov’s method [6]. This will play a key role in the proof of Theorem 1.1.

Lemma 2.1. Define ψ(t) := t− [t]− 1
2

for t ∈ R. There are two absolute positive constants
c1 and c2 such that the inequality∑

N6n<N ′

1

n
ψ
(x
n

)
� e−c1(logN)3/(log x)2(logN)3/(log x)2

holds uniformly for x > 10, exp{c2(log x)2/3} 6 N 6 x2/3 and N < N ′ 6 2N .
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The second lemma is [16, Lemma 2.4].

Lemma 2.2. [16, Lemma 2.4] Let ψ(t) be defined as in Lemma 2.1 and F (t) := (1/t)ψ(x/t).
Denote by VF [z1, z2] the total variation of F on [z1, z2]. Then we have

VF [z1, z2]� x/z2
1 + 1/z1

uniformly for 2 6 z1 < z2 6 x, where the implied constant is absloute.

2.2. An expression on the mean value of f .

Lemma 2.3. Assume that the arithmetic function f(n) satisfies the conditions (1.11) and
(1.10). Then we have

(2.1)
∑
n6x

f(n) =
1

2
Cfx

2 −Dgx
(z − [z])2 + [z]

2z
+O

( xz

r3(x/z)
+
xr2(x/z)

z

)
−∆g(x, z)

uniformly for x > 2 and 1 6 z 6 x1/3, where

(2.2) ∆g(x, z) := x
∑
d6x/z

g(d)

d
ψ
(x
d

)
.

Further for x > 2 we have

(2.3)
∑
n6x

f(n) =
1

2
Cfx

2 +O(x(log x)r2(x)).

Proof. Since f(n) =
∑

dm=n g(d)m, we can apply the hyperbole principe to write

(2.4)
∑
n6x

f(n) =
∑
dm6x

g(d)m = S1 + S2 − S3,

where

S1 :=
∑
d6x/z

∑
m6x/d

g(d)m, S2 :=
∑
m6z

∑
d6x/m

g(d)m, S3 :=
∑
d6x/z

∑
m6z

g(d)m.

Firstly we have

S1 =
1

2

∑
d6x/z

g(d)
[x
d

]([x
d

]
+ 1
)

=
1

2

∑
d6x/z

g(d)
(x
d
− ψ

(x
d

)
− 1

2

)(x
d
− ψ

(x
d

)
+

1

2

)
=

1

2

∑
d6x/z

g(d)
{(x

d

)2

− 2
x

d
ψ
(x
d

)
+O(1)

}
=
x2

2

∑
d6x/z

g(d)

d2
−∆g(x, z) +O

(xr2(x/z)

z

)
where we have used the condition (1.10) for bounding the contribution of the term O(1).
On the other hand, by (1.11), a simple partial integration leads to∑

d6x/z

g(d)

d2
= Cf −

∫ ∞
x/z

t−2 d(Dgt+O(t/r3(t))) = Cf −Dg
z

x
+O

( z

xr3(x/z)

)
.
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Inserting this into the preceding formula, we find that

(2.5) S1 =
1

2
Cfx

2 − 1

2
Dgxz +O

( xz

r3(x/z)
+
xr2(x/z)

z

)
−∆g(x, z).

In view of the condition (1.11), it follows that

S2 =
∑
m6z

m
{
Dg

x

m
+O

( x

mr3(x/m)

)}
= Dgx[z] +O

( xz

r3(x/z)

)
,(2.6)

S3 =
{
Dg

x

z
+O

( x

zr3(x/z)

)} [z]([z] + 1)

2
= Dgx

[z]([z] + 1)

2z
+O

( xz

r3(x/z)

)
.(2.7)

Now (2.1) follows from (2.4), (2.5), (2.6) and (2.7).
Finally, taking z = 1 in (2.1) yields∑

n6x

f(n) =
1

2
Cfx

2 +O(xr2(x))−∆g(x, 1).

On the other hand, using the hypothesis (1.10), a simple partial integration leads to

∆g(x, 1)� x
∑
d6x

|g(d)|/d� x(log x)r2(x).

Inserting this into the preceding formula, we obtain (2.3). �

2.3. Bound on an average of ∆g.

Lemma 2.4. Assume that the arithmetic function f(n) satisfies the hypothesis (1.10). Let
A > 0 be a constant and let N0 := exp{((A+3)/c1)1/3(log x)2/3(log2 x)1/3}, where c1 is given
as in Lemma 2.1. Let ∆g(x, z) be defined by (2.2). Then we have

(2.8)

∣∣∣∣ ∑
N0<n6

√
x

∆g

(x
n
, z
)∣∣∣∣+

∣∣∣∣ ∑
N0<n6

√
x

∆g

(x
n
− 1, z

)∣∣∣∣�A
xr2(x/z)

(log x)A
+
xr2(x/z) log x

z

uniformly for x > 10 and 2 6 z 6 N
1/2
0 .

Proof. Denote by ∆g,1(x, z) and ∆g,2(x, z) two sums on the left-hand side of (2.8), respec-
tively. By (2.2) of Lemma 2.3, we can write

∆g,1(x, z) = x
∑

N0<n6
√
x

∑
d6x/(nz)

g(d)

dn
ψ
( x
dn

)
= x

∑
d6x/(N0z)

g(d)

d

∑
N0<n6min(

√
x, x/(dz))

1

n
ψ
( x
dn

)
= x∆†g,1(x, z) + x∆]

g,1(x, z),

where

∆†g,1(x, z) :=
∑

d6x/(N0z)

g(d)

d

∑
N0<n6(x/d)2/3

1

n
ψ
( x
dn

)
,

∆]
g,1(x, z) :=

∑
d6x/(N0z)

g(d)

d

∑
(x/d)2/3<n6min{

√
x, x/(dz)}

1

n
ψ
( x
dn

)
.
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For 0 6 k 6 (log((x/d)2/3/N0))/ log 2, let Nk := 2kN0 and define

Sk(d) :=
∑

Nk<n62Nk

1

n
ψ
( x
dn

)
.

Noticing that N0 6 Nk 6 (x/d)2/3, we can apply Lemma 2.1 to derive that

Sk(d)� e−ϑ((logNk)3/(log(x/d))2)

with ϑ(t) := c1t− log t. It is clear that ϑ(t) is increasing on [c1,∞). On the other hand, for
k > 0 and d 6 x/(N0z) we have

(logNk)
3/(log(x/d))2 > (logN0)3/(log x)2 = ((A+ 3)/c1) log2 x.

Thus

ϑ((logNk)
3/(log(x/d))2) > ϑ(((A+ 3)/c1) log2 x)

= (A+ 3) log2 x− log(((A+ 3)/c1) log2 x)

> (A+ 2) log2 x,

which implies that Sk(d)� (log x)−A−2. Inserting this into the expression of ∆†g,1(x, z) and
using the condition (1.10), we find that

(2.9)

∆†g,1(x, z)�
∑

d6x/(N0z)

|g(d)|
d

∑
2kN06(x/d)2/3

|Sk(d)|

� 1

(log x)A+1

∑
d6x/z

|g(d)|
d
� r2(x/z)

(log x)A
·

Next we bound ∆]
g,1(x, z). It is well known that, if F (t) is a real function with bounded

variation on each interval [n, n+ 1], we have∑
N1<n6N2

F (n) =

∫ N2

N1

F (t) dt+ 1
2

(
F (N1) + F (N2)

)
+O

(
VF [N1, N2]

)
,

where N1, N2 ∈ Z+ and VF [N1, N2] denotes the total variation of F on [N1, N2]. We apply
this formula to

F (t) =
1

t
ψ
((x/d)

t

)
, N1 = [(x/d)2/3], N2 = [min{

√
x, x/(dz)}].

After Lemma 2.2, we have VF [N1, N2]� (x/d)−1/3. Putting u = (x/d)/t we obtain

(2.10)

∑
(x/d)2/3<n6min{

√
x, x/(dz)}

1

n
ψ
( x
dn

)
=

∫ (x/d)1/3

max(
√
x/d, z)

ψ(u)

u
du+O

(
(x/d)−1/3

)
� z−1 + (x/d)−1/3.

Using (2.10) and (1.10), a simple partial integration allows us to derive that

(2.11)

∆]
g,1(x, z)�

∑
d6x/z

|g(d)|
d

(
z−1 + (x/d)−1/3

)
� r2(x/z) log x

z
+
r2(x/z) log x

(N0z)1/3
� r2(x/z) log x

z
,
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since z 6 N
1/2
0 . Combining (2.9) and (2.11), it follows that∣∣∆g,1(x, z)

∣∣� xr2(x/z)

(log x)A
+
xr2(x/z) log x

z
·

Similarly we can prove the same bound for
∣∣∆g,2(x, z)

∣∣. This completes the proof. �

3. Proof of Theorem 1.1

Putting d = [x/n], we have x/n − 1 < d 6 x/n and x/(d + 1) < n 6 x/d. Following
Goswami [4], we write

(3.1)

Sf (x) =
∑
d6x

f(d)
∑

x/(d+1)<n6x/d

1

=
∑
dn6x

f(d)−
∑

(d+1)n6x

f(d)

=
∑
dn6x

(f(d)− f(d− 1)),

where we have set that f(0) = 0. By the hyperbole principe, we can decompose Sf (x) into
three parts:

(3.2) Sf (x) = S1(x) + S2(x)− S3(x),

where

S1(x) :=
∑

d6
√
x, dn6x

(f(d)− f(d− 1)),

S2(x) :=
∑

n6
√
x, dn6x

(f(d)− f(d− 1)),

S3(x) :=
∑

d6
√
x, n6

√
x

(f(d)− f(d− 1)).

In view of the hypothesis (1.9), we can derive that

(3.3) S3(x) = [
√
x]f([

√
x])� xr1(x).

For evaluating S1, we write

(3.4)

S1(x) =
∑
d6
√
x

(f(d)− f(d− 1))
[x
d

]
= x

∑
d6
√
x

f(d)− f(d− 1)

d
+O

( ∑
d6
√
x

|f(d)− f(d− 1)|
)
.

With the help of the hypothesis (1.9) and (2.3) of Lemma 2.3, it follows that∑
d6
√
x

f(d)− f(d− 1)

d
=
∑
d6
√
x

f(d)

d2
−
∑
d6
√
x

f(d)

d2(d+ 1)

=

∫ √x
1−

t−2 d
(

1
2
Cf t

2 +O(tr2(t) log t)
)

+O(1)

=
1

2
Cf log x+O(1).



8 J. MA, J. WU & F. ZHAO

By the hypothesis (1.9), we have∑
d6
√
x

|f(d)− f(d− 1)| 6 2
∑
d6
√
x

|f(d)| �
∑
d6
√
x

dr1(d)� xr1(x).

Inserting these estimates into (3.4), we find that

(3.5) S1(x) =
1

2
Cfx log x+O(xr1(x)).

Finally we evaluate S2. Let N0 := exp{((A+3)/c1)1/3(log x)2/3(log2 x)1/3}, where c1 is the
constant given as in Lemma 2.1. We write

(3.6) S2(x) = S
†
2(x) + S

]
2(x),

where

S
†
2(x) :=

∑
n6N0, dn6x

(f(d)− f(d− 1)),

S
]
2(x) :=

∑
N0<n6

√
x, dn6x

(f(d)− f(d− 1)).

Using the hypothesis (1.9), we have

S
†
2(x) =

∑
n6N0

f([x/n])� x
∑
n6N0

r1(x/n)/n� x(log x)2/3(log2 x)1/3r1(x).

On the other hand, (2.1) of Lemma 2.3 allows us to derive that∑
d6x

f(d)−
∑
d6x−1

f(d) = Cfx+O
( xz

r3(x/z)
+
xr2(x/z)

z

)
−∆g(x, z) + ∆g(x− 1, z).

Thus

S
]
2(x) =

∑
N0<n6

√
x

{
Cf
x

n
+O

( xz

nr3(
√
x/z)

+
xr2(x/z)

nz

)
−∆g

(x
n
, z
)

+ ∆g

(x
n
− 1, z

)}
=

1

2
Cfx log x+O

(
x(log x)2/3(log2 x)1/3 +

xz log x

r3(
√
x/z)

+
xr2(x/z) log x

z

)
−∆g,1(x, z) + ∆g,2(x, z),

where

∆g,1(x, z) :=
∑

N0<n6
√
x

∆g

(x
n
, z
)
� xr2(x/z)

(log x)A
+
x(log x)r2(x/z)

z
,

∆g,2(x, z) :=
∑

N0<n6
√
x

∆g

(x
n
− 1, z

)
� xr2(x/z)

(log x)A
+
x(log x)r2(x/z)

z
,

thanks to Lemma 2.4. Inserting these estimates into (3.6), we find that

(3.7) S2(x) =
1

2
Cfx log x+O(xR(x, z)),

where R(x, z) is defined as in (1.13)
Now the required result (1.12) follows from (3.2), (3.3), (3.5) and (3.7).

Finally we prove the second assertion. Let E(x) be the error term of (1.12), i.e.

Sf (x) = Cfx log x+ E(x),
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and define E∗(x) := max{|E(x)|, |E(x− 1)|}. Firstly we suppose that

(3.8) |f(p− 1)| < cf(1)p

holds for an infinity of primes p. In view of (3.1), for each prime p we can write

(3.9)

∑
d|p

(f(d)− f(d− 1)) = Sf (p)− Sf (p− 1)

= Cfp log p− Cf (p− 1) log(p− 1) + E(p)− E(p− 1)

6 2E∗(p) +O(log p).

On the other hand, our hypothesis (3.8) and (1.11) allow us to deduce that

(3.10)

∑
d|p

(f(d)− f(d− 1)) = f(p)− f(p− 1) + f(1)

= g(1)p+ g(p)f(1)− f(p− 1) + f(1)

> (1− c)f(1)p+O(p/r3(p))

> 1
2
(1− c)f(1)p

for an infinity of primes p. Combining (3.9) and (3.10), we find that

E∗(p) > 1
5
(1− c)f(1)p

for an infinity of primes p.
Next we suppose that

(3.11) |f(p− 1)| > c−1f(1)p > 0

holds for an infinity of primes p. Similar to (3.9), for each prime p we can write

(3.12)
∑
d|p

(f(d)− f(d− 1)) > −2E∗(p) +O(log p).

Similar to (3.10), our hypothesis (3.11) and (1.11) allow us to deduce that

(3.13)
∑
d|p

(f(d)− f(d− 1)) 6 −1
2
(c−1 − 1)f(1)p

for an infinity of primes p. Combining (3.12) and (3.13), we find that

E∗(p) > 1
5
(c−1 − 1)f(1)p > 0

for an infinity of primes p. �

4. Proof of Corollary 1.2

4.1. Proof of (1.5).

Since ϕ = id ∗ µ, we have g = µ and the following well-known bound∑
n6x

µ(n)� x

(log x)2
(x > 2).

Thus ϕ(n) verifies the conditions (1.9), (1.10) and (1.11) with Dµ = 0 and

r1(x) = 1, r2(x) = 1, r3(x) = log2(3x),

Zhai’s (1.5) follows from Theorem 1.1 thanks to the choice of z = log1/3(3x).
For each odd prime p, we can write p− 1 = 2νm with 2 - m. Thus

ϕ(p− 1) = ϕ(2ν)ϕ(m) 6 2ν−1m < 1
2
p
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for all odd primes p and Theorem 1.1(ii) implies that the error term of (1.5) is Ω(x).

4.2. Proof of (1.15).

In this case, we have g = λ and the following well-known bound∑
n6x

λ(n)� x

(log x)2
(x > 2).

Thus the function β(n) verifies the conditions (1.9), (1.10) and (1.11) with Dβ = 0 and

r1(x) = 1, r2(x) = 1, r3(x) = log2(3x).

Now (1.15) follows from Theorem 1.1 thanks to the choice of z = log1/3(3x).
For all primes p and integers ν > 1, we have

β(pν) =
∑

06j6ν

(−1)ν−jpj =
pν+1 + (−1)ν

p+ 1
6

{
3
4
2ν if p = 2,

pν otherwise.

For each odd prime p, we can write p− 1 = 2νm with 2 - m. Thus

β(p− 1) = β(2ν)β(m) 6 3
4
(p− 1) 6 3

4
p

for all odd primes p and Theorem 1.1(ii) implies that the error term of (1.5) is Ω(x).

5. Proof of Corollary 1.3

5.1. Proof of (1.7).

In this case, we have g = 1 and∑
n6x

1(n) = x+O(1) (x > 2).

Thus the function σ(n) verifies the conditions (1.9), (1.10) and (1.11) with D1 = 1 and

r1(x) = log2(3x) + 1, r3(x) =
√
x, r2(x) = 1.

Wu-Zhao’s (1.7) follows from Theorem 1.1 thanks to the choice of z = log1/3(3x).
For all odd primes p, we have

σ(p− 1) > (p− 1) + 1
2
(p− 1) + 1 > 5

4
p.

Thus Theorem 1.1(ii) implies that the error term of (1.7) is Ω(x).

5.2. Proof of (1.16).

In this case, we have g = µ2 and∑
n6x

µ(n)2 = (6/π2)x+O(
√
x) (x > 2).

Thus the function Ψ(n) verifies the conditions (1.9), (1.10) and (1.11) with Dµ2 = 6/π2 and

r1(x) = log2(3x) + 1, r2(x) = 1, r3(x) =
√
x.

Now (1.16) follows from Theorem 1.1 thanks to the choice of z = log1/3(3x).
For all primes p and integers ν > 1, we have

Ψ(pν) = pν + pν−1 >

{
3
2
2ν if p = 2,

pν otherwise.
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For each odd prime p, we can write p− 1 = 2νm with 2 - m. Thus

Ψ(p− 1) = γ(2ν)γ(m) > 3
2
(p− 1) > 5

4
p

for all odd primes p > 7 and Theorem 1.1(ii) implies that the error term of (1.16) is Ω(x).
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