| JOURNAL OF NUCLEAR MATERIALS | 卷:528 |
| Nanoscale analysis of ion irradiated ODS 14YWT ferritic alloy | |
| Article | |
| Auger, Maria A.1,2  Hoelzer, David T.3  Field, Kevin G.3  Moody, Michael P.2  | |
| [1] Univ Carlos III Madrid, Phys Dept, Ave Univ 30, Madrid 28911, Spain | |
| [2] Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England | |
| [3] Oak Ridge Natl Lab, POB 2009, Oak Ridge, TN 37831 USA | |
| 关键词: 14YWT; ODS alloys; Atom probe tomography; Ion irradiation; Clusters; | |
| DOI : 10.1016/j.jnucmat.2019.151852 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
In this work, the nanoscale microstructure of an advanced oxide dispersion strengthened (ODS) 14YWT ferritic alloy (SM13 heat) with nominal composition Fe-14Cr-3W-0.4Ti-0.3Y(2)O(3) (wt. %) has been characterized by atom probe tomography (APT) before and after ion irradiation with 70 MeV Fe9+ ions at 450 degrees C to a total dose of 21 dpa. A detailed solute cluster analysis of APT data reveals that, in the manufacturing process, larger nanoparticles form in or close to the grain boundaries respective to those inside grains. The evolution of the nanoparticles after irradiation seems to be related to their location, as a higher increase in the number density and in the Y:Ti ratio is observed for the nanoparticles in or close to grain boundaries. APT analysis also shows Cr, W and C segregation to grain boundaries enhanced by the irradiation. A previous study of this same alloy before and after irradiation reports that the mechanical properties do not seem to be affected, but the microstructure was not investigated to confirm. The present work confirms little microstructural evolution after irradiation in this 14YWT alloy, indicating tolerance at the given irradiation conditions. (C) 2019 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jnucmat_2019_151852.pdf | 2697KB |
PDF