期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:171
Predictor ranking and false discovery proportion control in high-dimensional regression
Article
Jeng, X. Jessie1  Chen, Xiongzhi2 
[1] North Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
[2] Washington State Univ, Dept Math & Stat, Pullman, WA 99164 USA
关键词: Multiple testing;    Penalized regression;    Sparsity;    Variable selection;   
DOI  :  10.1016/j.jmva.2018.12.006
来源: Elsevier
PDF
【 摘 要 】

We propose a ranking and selection procedure to prioritize relevant predictors and control false discovery proportion (FDP) in variable selection. Our procedure utilizes a new ranking method built upon the de-sparsified Lasso estimator. We show that the new ranking method achieves the optimal order of minimum non-zero effects in ranking relevant predictors ahead of irrelevant ones. Adopting the new ranking method, we develop a variable selection procedure to asymptotically control FDP at a user-specified level. We show that our procedure can consistently estimate the FDP of variable selection as long as the de-sparsified Lasso estimator is asymptotically normal. In simulations, our procedure compares favorably to existing methods in ranking efficiency and FOP control when the regression model is relatively sparse. Published by Elsevier Inc.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2018_12_006.pdf 957KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次