期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:125
A new sparse variable selection via random-effect model
Article
Lee, Youngjo1  Oh, Hee-Seok1 
[1] Seoul Natl Univ, Dept Stat, Seoul 151747, South Korea
关键词: Maximum likelihood estimator;    Prediction;    Random-effect models;    Sparsity;    Variable selection;   
DOI  :  10.1016/j.jmva.2013.11.016
来源: Elsevier
PDF
【 摘 要 】

We study a new approach to simultaneous variable selection and estimation via random-effect models. Introducing random effects as the solution of a regularization problem is a flexible paradigm and accommodates likelihood interpretation for variable selection. This approach leads to a new type of penalty, unbounded at the origin and provides an oracle estimator without requiring a stringent condition. The unbounded penalty greatly enhances the performance of variable selections, enabling highly accurate estimations, especially in sparse cases. Maximum likelihood estimation is effective in enabling sparse variable selection. We also study an adaptive penalty selection method to maintain a good prediction performance in cases where the variable selection is ineffective. (C) 2013 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2013_11_016.pdf 1037KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次