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a b s t r a c t

We propose a ranking and selection procedure to prioritize relevant predictors and control
false discovery proportion (FDP) in variable selection. Our procedure utilizes a new ranking
method built upon the de-sparsified Lasso estimator. We show that the new ranking
method achieves the optimal order of minimum non-zero effects in ranking relevant
predictors ahead of irrelevant ones. Adopting the new ranking method, we develop a
variable selection procedure to asymptotically control FDP at a user-specified level. We
show that our procedure can consistently estimate the FDP of variable selection as long as
the de-sparsified Lasso estimator is asymptotically normal. In simulations, our procedure
compares favorably to existing methods in ranking efficiency and FDP control when the
regression model is relatively sparse.

Published by Elsevier Inc.

1. Introduction

In the past fifteen years, impressive progress has beenmade in high-dimensional statisticswhere the number of unknown
parameters can greatly exceed the sample size. We consider a sparse linear model

y = x⊤β + ε,

where y is the response variable, x = (x1, . . . , xp)⊤ the vector of predictors, β = (β1, . . . , βp)⊤ the unknown coefficient
vector, and ε the random error. Our goal is to simultaneously test, for all j ∈ {1, . . . , p},

H0j : βj = 0 vs. H1j : βj ̸= 0

and select a predictor Xj into the model if H0j is rejected.
Much work has been conducted on point estimation of β; see, e.g., Chapters 1–10 of [6]. Among the most popular point

estimators, the Lasso benefits from the geometry of the L1 normpenalty to shrink some coefficients exactly to zero and hence
performs variable selection [29]. The Lasso estimator β̂ possesses desirable properties including the oracle inequalities on
∥β̂ − β∥q for q ∈ [1, 2]; see, e.g., [3,6]. However, it is difficult to characterize the distribution of the Lasso estimator and
assess the significance of selected variables.

Recently, the focus of research in high-dimensional regression has been shifted to confidence intervals and hypothesis
testing for β. Substantial progress has been made in [7,11,19,21,22,25,30,32,35], among others. In particular, innovative
methods have been developed to enable multiple hypothesis testing on β. For example, [5] and [34] propose to control the
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family-wise error rate (FWER) under the dependence imposed by β estimation. Methods to control the false discovery rate
(FDR) have been developed, e.g., in [1,2,4,9,17,20,27].

In this paper, we aim to prioritize relevant predictors in predictor ranking and select variables by controlling the false
discovery proportion (FDP) defined in [16]. The FDP is the ratio of the number of false positives to the number of total
rejections. Given an experiment, the FDP is realized but unknown. In the literature of multiple testing, estimating the FDP
under dependence has been studied in, e.g., [12,13,15].

We propose the DLasso-FDP procedure, which ranks and selects predictors in linear regression based on the de-sparsified
Lasso (DLasso) estimator and its limiting distribution [30,35]. We show that ranking the predictors by the standardized
DLasso estimator achieves the optimal order of the minimum non-zero effect for ranking relevant predictors ahead of
irrelevant ones when the dimension p, the sample size n, and the number of non-zero coefficients s0 satisfy s0 = o(n/ln p).
Further, we develop consistent estimators of the FDP and marginal FDR for variable selection based on the standardized
DLasso estimator. Unlike in conventional studies on FDP and FDR where the null distributions of test statistics are exact,
the null distribution of the DLasso estimator can only be approximated asymptotically, and the approximation errors for
all estimated regression coefficients need to be considered conjointly to estimate FDP. Our simulation studies support our
theoretical findings and demonstrate that DLasso-FDP compares favorably with existing methods in ranking efficiency and
FDP control, especially when the regression model is relatively sparse.

The rest of the article is organized as follows. Section 2 provides theoretical analyses on the ranking efficiency of
the standardized DLasso estimator and consistent estimation of the FDP and marginal FDR of the DLasso-FDP procedure.
Simulation results are presented in Section 3. Section 4 provides further discussion. All proofs are presented in Appendix.

2. Theory and methods

2.1. Notations

We collect notations that will be used throughout the article. The symbols O(·) and o(·) respectively denote Landau’s big
O and small o notations, for which accordingly OPr(·) and oPr(·) their probabilistic versions. The symbol C denotes a generic,
finite constant whose values can be different at different occurrences.

For amatrixM,Mij denotes its (i, j) entry, its q-norm is ∥M∥q = (
∑

i,j |Mij|
q)1/q for q > 0, its∞-norm ∥M∥∞ = maxi,j |Mij|,

and ∥M∥1,∞ is the maximum of the 1-norm of each row of M. If M is symmetric, σi(M) denotes the ith smallest eigenvalue
ofM. The symbol I denotes the identity matrix. A vector v is always a column vector whose ith component is denoted by vi.
For a set A, |A| denotes its cardinality and 1A its indicator. a ∨ b = max(a, b) for two real numbers a and b.

2.2. Regression model and the de-sparsified Lasso estimator

Given n observations from the model y = x⊤β + ε, we have

y = Xβ + ε, (1)

where y = (y1, . . . , yn)⊤ and X = [x1, . . . , xp] ∈ Rn×p. We assume ε ∼ Nn(0, σ 2I) and σ 2
= O(1) in this work. Let

S0 = {j : βj ̸= 0} and s0 = |S0|. The Lasso estimator is

β̂ = β̂(λ) = arg min
β∈Rp

(∥y − Xβ∥
2
2/n + 2λ∥β∥1). (2)

Let Σ̂ = X⊤X/n. To obtain the de-sparsified Lasso estimator for β as in [30] and [35], a matrix Θ̂ ∈ Rp×p such that Θ̂Σ̂ is
close to I is obtained by Lasso for node-wise regression on X as in [24]. Let X−j denote the matrix obtained by removing the
jth column of X. For each j ∈ {1, . . . , p}, let

γ̂ j = argmin
γ∈Rp−1

(∥xj − X−jγ∥
2
2/n + 2λj∥γ∥1) (3)

with components γ̂j,k with k ∈ {1, . . . , p} and k ̸= j. Further, define

τ̂ 2
j = ∥xj − X−jγ̂ j∥

2
2/n + 2λj∥γ̂ j∥1

and

Θ̂ = diag(τ̂−2
1 , . . . , τ̂−2

p )

⎛⎜⎜⎝
1 −γ̂1,2 · · · −γ̂1,p

−γ̂2,1 1 · · · −γ̂2,p
...

...
...

...

−γ̂p,1 −γ̂p,2 · · · 1

⎞⎟⎟⎠ .

The estimator

b̂ = β̂ + Θ̂X⊤(y − Xβ̂)/n (4)
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is referred to as the de-sparsified Lasso (DLasso) estimator. This implies
√
n (b̂ − β) = n−1/2 Θ̂X⊤ε − δ = w − δ,

wherew|X ∼ Np(0, σ 2Ω̂), Ω̂ = Θ̂Σ̂Θ̂⊤, and δ =
√
n (Θ̂Σ̂ − I)(β̂ − β).

Since the distribution of w|X is fully specified, it is essential to study δ to derive the distribution of b̂. We adopt the
result in [19], which provides an explicit bound on the magnitude of δ. Let Θ = Σ−1, sj = |{k ̸= j : Θjk ̸= 0}| and
smax = max(s1, . . . , sp). Note that sj can be regarded as the number of non-zero coefficients when regressing Xj on the
remaining predictors. Suppose the following hold:

(A1) Gaussian random design: the rows of X are iid Np (0,Σ) for which Σ satisfies:

(A1a) max(Σ11, . . . ,Σpp) ≤ 1.
(A1b) 0 < Cmin ≤ σ1 (Σ) ≤ σp (Σ) ≤ Cmax < ∞ for constants Cmin and Cmax.

(A1c) ρ (Σ, C0s0) ≤ ρ for some constant ρ > 0, where C0 = 32Cmax/Cmin + 1,

ρ (A, k) = max
T⊆[p],|T |≤k

∥A−1
T ,T∥1,∞

for a square matrix A, [p] = {1, . . . , p}, AT ,T is a submatrix formed by taking entries of Awhose row and column
indices respectively form the same subset T .

(A2) Tuning parameters: for the Lasso in (2), λ = 8σ
√
ln(p)/n; for node-wise regression in (3), λj = κ̃

√
ln(p)/n for

j ∈ {1, . . . , p} for a suitably large universal constant κ̃ .

We rephrase Theorem 3.13 of [19] for unknown Σ as follows.

Lemma 1. Consider model (1). Assume (A1) and (A2). Then there exist positive constants c and c ′ depending only on Cmin, Cmax
and κ̃ such that, for max(s0, smax) < cn/ln p, the probability that

∥δ∥∞ ≤ c ′ρσ
√
s0/n ln p + c ′σ min(s0, smax)ln(p)/

√
n

is at least 1 − 2pe−nCmin/(16s0) − pe−cn
− 6p−2.

Lemma 1 provides an explicit bound on the magnitude of δ, and hence the difference between the distribution of the
DLasso estimator b̂ and the normally distributed variablew|X. This is very helpful for our subsequent studies.

2.3. Ranking efficiency of the DLasso estimator

In general, variable selection procedures rank predictors by somemeasure of importance and select a subset of top-ranked
predictors based on a selection criterion. For instance, the Lasso ranks predictors by the Lasso solution path and selects a
subset of top-ranked predictors by, e.g., cross validation. In this paper, we propose to rank the predictors by the standardized
DLasso estimator and select the top-ranked predictors via FDP control. The standardized DLasso estimator is constructed by
setting, for each j ∈ {1, . . . , p},

zj =
√
n b̂jσ−1Ω̂

−1/2
jj . (5)

We rank the predictors by their absolute values of zj in a decreasing order. Let I0 = {1 ≤ j ≤ p : βj = 0} and p0 = |I0|. We
say that all relevant predictors are asymptotically ranked ahead of any irrelevant predictor if

lim
p→∞

Pr
(
min
j∈S0

|zj| > max
j∈I0

|zj|
)

= 1.

Note that although theDLasso estimates are asymptotically normally distributed givenX, their asymptotic covariancematrix
σ 2Ω̂ (Ω̂ = Θ̂Σ̂Θ̂⊤) is not a sparse matrix. The following theorem provides insights for the efficiency of ranking predictors
by |zj| under such covariance dependence.

Theorem 1. Consider model (1) and the standardized DLasso estimator z1, . . . , zp in (5). Let Cp = ln(p2/2π )+ ln ln(p2/2π ) and

Bp (s0, n,Σ) = c ′ρσ
√
s0/n ln p + c ′σ min(s0, smax)ln(p)/

√
n.

Assume (A1) and (A2). If s0 ≤ p0, max(s0, smax) = o(n/ln p) and

βmin ≡ min
j∈S0

|βj| ≥ 2n−1/2
{√

C−1
minCmaxBp (s0, n,Σ) + σ

√
Cmax(1 + a)

√
Cp0

}
(6)

for some constant a > 0, then the standardized DLasso estimator asymptotically ranks all relevant predictors ahead of any
irrelevant ones, i.e., Pr(minj∈S0 |zj| > maxj∈I0 |zj|) → 1 as s0 → ∞.
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Condition (6) on βmin is imposed to separate relevant predictors from irrelevant ones. Note that condition (6) implies
βmin > C

√
ln p/n, and the order of

√
ln p/n is optimal for perfect separation of signals from noise. Further, compared to

Lemma 1, the stronger condition in Theorem 1 on smax, i.e., smax = o(n/ln p), ensures ∥Ω̂ − Σ−1
∥∞ = oPr (1), so that the

standardization of each b̂j in (5) is proper.

2.4. Consistent estimation of FDP and marginal FDR

Recall that we are simultaneously testing H0j : βj = 0 vs. H1j : βj ̸= 0 for j ∈ {1, . . . , p} and selecting predictor Xj into
the model whenever H0j is rejected. The findings on the ranking efficiency of the standardized DLasso help us to develop a
variable selection procedure with the following rejection rule:

reject H0j whenever |zj| > t for a fixed rejection threshold t > 0. (7)

Define Rz(t) = 1(|z1| > t) + · · · 1(|zp| > t) as the number of discoveries and Vz(t) =
∑

j∈I0
1(|zj| > t) the number of false

discoveries. Then the FDP of the procedure at rejection threshold t is

FDPz(t) =
Vz(t)

Rz(t) ∨ 1
.

To control the FDP of the procedure at a prespecified level, we propose to consistently estimate FDPz(t) for any fixed t .
To this end, we state an extra assumption.

(A3) Sparsities of β and Θ: max(s0, smax) = o(n/ln p), min(smax, s0) = o(
√
n/ln p), s0 = o{n/(ln p)2} and s0 = o(p).

Assumption (A3), together with Lemma 1, ensures ∥δ∥∞ = oPr(1); see [19]. This is sufficient for us to construct a consistent
estimator of FDPz(t), i.e.,

F̂DP(t) =
2pΦ(−t)
Rz (t) ∨ 1

,

whereΦ is the cumulative distribution function (CDF) of the standard normal randomvariable. Note that F̂DP(t) is observable
based on z1, . . . , zp, and that the latter are dependent with non-sparse covariance matrix.

Theorem 2. Consider model (1) and the standardized DLasso estimator z1, . . . , zp in (5). Assume (A1) to (A3). Then

F̂DP(t) − FDPz(t) = oPr(1). (8)

Theorem2 shows that FDPz(t) can be consistently estimated by the observable quantity F̂DP(t)whenβ andΘ are sparse in
the sense of assumption (A3). Moreover, no additional assumptions other than those needed to ensure asymptotic normality
of the DLasso estimator are necessary when X is from Gaussian random design.

An analogous result can be obtained for estimating the marginal FDR, which is defined as

mFDRz(t) = E{Vz(t)}/E{Rz(t) ∨ 1}.

Marginal FDR was proposed in [28] and has been proved to be close to FDR when test statistics are independent. Here, we
have:

Corollary 1. Under the conditions in Theorem 2, F̂DP(t) − mFDRz(t) = oPr(1).

2.5. Algorithm for the DLasso-FDP procedure

Once we are able to consistently estimate the FDP of the procedure defined by (7), for a user-specified α ∈ (0, 1) we
can determine the rejection threshold tα such that F̂DPz (tα) ≤ α and then reject H0j if |zj| > tα for each j. This procedure,
which we call the De-sparsified Lasso FDP (DLasso-FDP) procedure, will have its FDP asymptotically bounded by α. The
implementation of the procedure is provided in Algorithm 1.

Algorithm 1: DLasso-FDP.

1: Calculate the DLasso estimator by (4) and obtain z1, . . . , zp by (5).
2: Rank the predictors by the absolute values of z1, . . . , zp so that |z(1)|> · · · > |z(p)|.
3: Specify an α ∈ (0, 1) for FDP control; e.g., α = 0.1.
4: Find the minimum value of t , denoted by tα , such that F̂DP(t) ≤ α.
5: Select the top-ranked predictors with |z(j)|> tα .

The following corollary summarizes the asymptotic control of FDP and mFDR by the DLasso-FDP procedure.

Corollary 2. Given a fixed α ∈ (0, 1), select predictors by the DLasso-FDP procedure described in Algorithm 1. Then, under the
conditions in Theorem 2, Pr{FDPz(tα) ≤ α} → 1 and Pr{mFDRz(tα) ≤ α} → 1.
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Fig. 1. Comparison in ranking efficiency of the standardized DLasso estimate (solid line) and Lasso solution path (dashed line).

3. Simulation results

In the following examples, the linear model (1) is simulated with p = 200, ε ∼ Nn(0, I), and each row of X ∼ Np(0,Σ).
We use the Erdős–Rényi random graph in [8] to generate the precision matrix Θ = Σ−1 with smax generated from the
binomial distribution Bin(p, 0.05), such that the nonzero elements of Θ are randomly located in each of its rows with
magnitudes randomly generated from the uniform distribution U(0.4, 0.8). Without loss of generality, β1, . . . , βs0 are
nonzero coefficients with the same value. We consider settings of different sample size (n), number of nonzero coefficients
(s0), and effect size of β1, . . . , βs0 . We obtain the DLasso estimates using the R package hdi and derive z by (5).

Example 1 (Ranking Efficiency Based on DLasso Estimate). We compare the ranking of |zj|, . . . , |zp| with the ranking based
on the Lasso solution path, which is generated by the R package glmnet. The efficiency of ranking is illustrated using the
FDP–TPP curve, where TPP represents the true positive proportion and is defined as the number of true positives divided by
s0.

For a given TPP ∈ {1/s0, . . . , s0/s0}, we measure the corresponding FDP, which is the price to pay in false positives for
retaining the given TPP level. Consequently, a more efficient method for ranking would have a lower FDP–TPP curve. Fig. 1
reports the mean values of the FDP–TPP curves over 100 replications for different methods. It shows that the ranking of
|z1|, . . . , |zp| is more efficient than that based on the Lasso solution path in prioritizing relevant predictors over irrelevant
ones under finite sample. The reason, we think, is because DLasso mitigates the bias induced by Lasso shrinkage.

Example 2 (Estimation of FDP). In this example,we compare our estimated FDPwith the true FDP in the settingswith p = 200,
β1 = 0.5, n = 100 or 150, and s0 = 10 or 30. Fig. 2 presents the empirical mean of our estimated FDP and the empirical
mean of the true FDP for different t values. It can be seen that (i) the mean values of the two statistics generally agree with
each other in all cases; (ii) the estimated FDP tends to be lower than true FDP for larger t values, and higher than true FDP
for smaller t values; and (iii) the approximation accuracy of the estimated FDP increases with the sample size.

We also show the histograms of the true FDP and estimated FDP at specific t values with p = 200, β1 = 0.5, s0 = 30,
n = 100 or 150. Fig. 3 shows that the distribution of the estimated FDP generally mimics that of the true FDP in a more
concentrated way. When sample size increases, the true FDP and the estimated FDP become more concentrated around
their own mean values.

Example 3 (Variable Selection by DLasso-FDP Procedure).We compare DLasso-FDP with three other methods: DLasso-FWER,
DLasso-BH, and Knockoff. DLasso-FWER is the dependence adjusted FWER control method in [5] and [30]. DLasso-BH is
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Fig. 2. Mean values of the true FDP (dashed line) and estimated FDP (solid line) with p = 200 and β1 = 0.5.

an ad hoc procedure that directly applies Benjamini–Hochberg’s procedure [2] on the asymptotic p-values of the DLasso
estimator. The first three methods (DLasso-FDP, DLasso-FWER, and DLasso-BH) are all built upon the DLasso estimator.
The fourth method, Knockoff, has been developed to directly control FDR without the need to derive limiting distribution
and p-values [1,9]. We use the ‘‘knockoff.filter" function in default from the R package knockoff, which creates model-X
second-order Gaussian knockoffs as introduced in [9]. The nominal levels are set at 0.1 for all the methods.

The performances of the methods are measured by the mean values of their true FDPs and TPPs from 100 simulations.
Note that the expected value of FDP is FDR. Table 1 has s0 = 10, n = 100 and 150, β1 = 0.5, 0.7, and 1. Table 2 has an
increased value for s0 to 30. Both tables show that DLasso-BH seems to control the empirical FDR the worst and DLasso-
FWER, on the contrary, is most conservative with smallest empirical FDR. For DLasso-FDP, we see that when the sample size
increases, DLasso-FDPhas a better control on the empirical FDRat thenominal level of 0.1,which agreeswith our expectation.
ComparingDLasso-FDPwith Knockoff, it shows that neither of the twomethods dominates the other in all the settings.When
s0 is relatively small in Table 1, DLasso-FDP tends to have higher TPP than Knockoff, especially when coefficient values are
small. In contrast, when s0 is relatively large in Table 2 (so that the sparsity condition on s0 in assumption (A3)may not hold),
Knockoff tends to have higher TPP than DLasso-FDP, especially when coefficient values are relatively large.

4. Discussion

Theoretical analyses in the paper have focused on the Gaussian random design. We show that our procedure can
consistently estimate the FDP of variable selection as long as the DLasso estimator is asymptotically normal. Extensions
to random design with sub-Gaussian rows or bounded rows can be developed with minor modifications.

We present the optimality of the standardized DLasso in ranking efficiency when the number of true predictors is
relatively small, i.e., s0 = o(n/ln p).When the true predictors are relatively dense, i.e., s0 ≫ n/ln p, relevant predictors always
intertwine with noise variables on the Lasso solution path even if all predictors are independent (i.e.,Σ = I), no matter how
large βmin is [26,31]. In this case, we expect improved ranking performance based on |z1|, . . . , |zp| because DLasso mitigates
the bias induced by Lasso shrinkage. The simulation results presented herein support this expectation. Theoretical analyses
in the setting with s0 ≫ n/ln p are scarce but relevant to real applications with dense causal factors. We hope to investigate
more in this direction in future research.

Finally, we point out that the computational burden of DLasso-FDP ismainly caused by precisionmatrix estimationwhen
dimension of the design matrix is large. Using node-wise regression by Lasso, one essentially solves p Lasso problems with
sample sizen anddimensionality p−1.When p is in the thousands ormore, resources for parallel computingwould beneeded
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Fig. 3. Histograms of the true FDP (FDP_true) and estimated FDP (FDP_estimated) when p = 200, β1 = 0.5, and s0 = 30.

Table 1
The mean values of FDP and TPP for different variable selection methods with s0 = 10 and p = 200.
n β1 DLasso-FDP DLasso-BH DLasso-FWER Knockoff

100 0.5 FDP 0.171 0.248 0.080 0.097
TPP 0.856 0.884 0.774 0.383

0.7 FDP 0.146 0.237 0.080 0.151
TPP 0.962 0.972 0.94 0.749

1 FDP 0.151 0.236 0.065 0.109
TPP 0.998 0.998 0.997 0.889

150 0.5 FDP 0.090 0.152 0.037 0.111
TPP 0.832 0.863 0.756 0.517

0.7 FDP 0.064 0.104 0.018 0.102
TPP 0.987 0.991 0.983 0.923

1 FDP 0.084 0.134 0.048 0.099
TPP 0.983 0.986 0.967 0.930

to facilitate the estimation of precision matrix. Accelerating the computation for precision matrix estimation without loss of
accuracy is of great interest for future research.
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Appendix

In these appendices, we present some lemmas that are needed for the proofs of the results presented in the main paper.
Recall that

√
n (b̂−β) = w− δ, wherew ∼ Np(0, σ 2Ω̂) conditional on X. We callw the pivotal statistic. In all the proofs, the
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Table 2
The mean values of FDP and TPP for different variable selection methods with s = 30 and p = 200.
n β1 DLasso-FDP DLasso-BH DLasso-FWER Knockoff

100 0.5 FDP 0.164 0.182 0.107 0.072
TPP 0.180 0.212 0.113 0.146

0.7 FDP 0.160 0.185 0.107 0.111
TPP 0.209 0.248 0.137 0.274

1 FDP 0.147 0.182 0.104 0.116
TPP 0.229 0.271 0.153 0.372

150 0.5 FDP 0.084 0.122 0.044 0.093
TPP 0.368 0.452 0.253 0.578

0.7 FDP 0.096 0.139 0.070 0.120
TPP 0.314 0.401 0.214 0.681

1 FDP 0.052 0.106 0.026 0.117
TPP 0.477 0.583 0.364 0.958

arguments are conditional on X unless otherwise noted. The OPr or oPr bounds for expectations, covariances or cumulative
distribution functions are induced by the randommatrix Ω̂ as the covariance matrix ofw.

A.1. Auxiliary lemmas

Lemma 2. Assume (A2) and smax = o (n/ln p). Then ∥Ω̂ − Σ−1
∥∞ = oP (1). If further (A1)b holds, then ∥Θ̂Σ̂ − I∥∞ = OPr(λ1),

bothmin(Ω̂11, . . . , Ω̂pp) andmax(Ω̂11, . . . , Ω̂pp) are uniformly bounded (in p) away from 0 and infinity with probability tending
to 1, and ∥δ′

∥∞ ≤ (σ
√
Cmin)−1 ∥δ∥∞ with probability tending to 1.

Proof. With (A2) and smax = o (n/ln p), the conditions of Lemmas 5.3 and 5.4 of [30] are satisfied, i.e., λj is of order
√
n−1 ln p

for each j ∈ {1, . . . , p}, max(s1, . . . , sp) = o (n/ln p) and max(λ2
1s1, . . . , λ

2
psp) = o (1). So, ∥Ω̂ − Σ−1

∥∞ = oP (1). Note that
for the positive definite matrixΩ = Σ−1, the largest and smallest amongΩjj for j ∈ {1, . . . , p} are sandwiched between Cmin
and Cmax. If in addition (A1)b holds, then Ω̂jj, j ∈ {1, . . . , p} are uniformly bounded away from 0 and infinity with probability
tending to 1, inequality (10) of [30] implies ∥Θ̂Σ̂ − I∥∞ = OPr(λ1), and ∥δ′

∥∞ ≤ (σ
√
Cmin)−1 ∥δ∥∞ with probability tending

to 1. This completes the proof. □

Lemma 3. Let K̂ be the correlation matrix ofw. Assume (A1) and (A2). Then

p−2
∥σ 2Ω̂∥1 = OPr(λ1

√
smax) and ∥K̂∥1 = O(σ 2

∥Ω̂∥1). (A.1)

Proof. Recall Ω̂ = Θ̂Σ̂Θ̂⊤, the covariance matrix of w. Because σ is bounded, we have ∥σ 2Ω̂∥1 = O(∥Ω̂∥1). Recall that θ̂j is
the jth row of Θ̂. By the triangle inequality,

∥Ω̂∥1 ≤ ∥(Θ̂Σ̂ − I)Θ̂⊤
∥1 + ∥Θ̂⊤

∥1 ≤

p∑
j=1

∥(Θ̂Σ̂ − I)θ̂
⊤

j ∥1 +

p∑
j=1

∥θ̂j∥1. (A.2)

To bound ∥Ω̂∥1, we bound ∥θ̂j∥1 and ∥(Θ̂Σ̂ − I)θ̂
⊤

j ∥1 separately. First,

∥θ̂j∥1 ≤ ∥θ̂j − θj∥1 + ∥θj∥1.

By Theorem 2.4 of [30], ∥θ̂j −θj∥1 = OPr(sjλj). By the Cauchy–Schwarz inequality, ∥θj∥1 ≤
√
sj ∥θj∥2, and from the discussion

in paragraph 5 on p. 1178 of [30], we see that ∥θj∥2 ≤ C−2
min = O(1). Given that sjλj ≪

√
sj, we find

∥θ̂j∥1 ≤ OP (
√
sj). (A.3)

Next consider ∥(Θ̂Σ̂ − I)θ̂
⊤

j ∥1 for any j ∈ {1, . . . , p}. By Lemma 2, we have ∥Θ̂Σ̂ − I∥∞ = OPr(λ1). This, together with (A.3),
gives

∥(Θ̂Σ̂ − I)θ̂
⊤

j ∥1 ≤ p ∥Θ̂Σ̂ − I∥∞ × ∥θ̂j∥1 = OPr(pλj) × OPr(
√
sj) = OPr(pλj

√
sj). (A.4)

Combining (A.3) and (A.4) with (A.2) gives

∥Ω̂∥1 = OPr(p2λj
√
sj) + OPr(p

√
sj) = OPr(p2λj

√
sj).

Given that the λjs are of the same order by assumption (A2), we have p−2
∥σ 2Ω̂∥1 = OPr(λ1

√
smax), which is the first part of

(A.1).
By Lemma 2, ∥σ 2Ω̂∥1 = O(∥K̂∥1) and the second part of (A.1) holds. This completes the proof. □
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Lemma 4. Assume (A1) to (A3). Then

|E{V̄z(t)} − E{V̄w̃(t)}| = oPr(1) and |V̄z(t) − V̄w̃ (t) | = oPr(1). (A.5)

Furthermore, var{V̄z (t)} − var{V̄w̃ (t)} = oPr(1).

Proof. For i ∈ I0, let Fp,i be CDF of zi and Φp,i that of w′

i . Note that βi = 0 for all i ∈ I0 and that each w′

i has unit
variance conditional on Ω̂. Recall Θ = Σ−1. By Lemma 2, ∥Ω̂ − Θ∥∞ = oPr (1). So, with probability approaching 1, w̃ has
a nondegenerate multivariate Normal (MVN) distribution, and Φp,i is absolutely continuous with respect to the Lebesgue
measure on R for any i, j ∈ {1, . . . , p} with i < j. Further, ∥δ′

∥∞ = oPr(1) in view of Lemmas 1 and 2. Therefore, for any
x ∈ R,

max
i∈I0

|Fp,i (x) − Φp,i (x) | = oPr(1). (A.6)

Let Fp,i,j be the joint CDF of (zi, zj) and Φp,i,j that of (w′

i, w
′

j) for each distinct pair of i and j. Then, for any x, y ∈ R, we have

max
i̸=j;i,j∈I0

|Fp,i,j(x, y) − Φp,i,j(x, y)| = oPr(1). (A.7)

Therefore, by (A.6), the first equality in (A.5) holds. Let

ζp(t) = max
i∈I0

|1(|zi|≤ t) − 1(|w′

i |≤ t)|.

Then (A.6) implies ζp(t) = oPr(1), and the second equality in (A.5) holds.
Now we show the last claim. Clearly,

var{V̄z (t)} =
1
p20

∑
j∈I0

var{1(|w′

j − δ′

j | > t)} +
1
p20

∑
i̸=j;i,j∈I0

cov{1(|w′

i − δ′

i | > t), 1(|w′

j − δ′

j | > t)}

and the first summand in the above identity is o(1) when p0 → ∞. However, (A.6) and (A.7) imply that

max
i̸=j;i,j∈I0

|cov{1(|w′

i − δ′

i |> t), 1(|w′

j − δ′

j |> t)} − cov{1(|w′

i |> t), 1(|w′

j |> t)}| = oPr(1).

Thus, var{V̄z (t)} − var{V̄w̃ (t)} = oPr(1). This completes the proof. □

A.2. Proof of Theorem 1

Recall that
√
n (b̂ − β) = w − δ, wherew|X ∼ Np(0, σ 2Ω̂). Let

µj =
√
nβj/(σ 2Ω̂jj)1/2, w′

j = wj/(σ 2Ω̂jj)1/2, δ′

j = δj/(σ 2Ω̂jj)1/2

for each j. Then

zj = µj + w′

j − δ′

j (A.8)

and each w′

j has unit variance. Set w̃ = (w′

1, . . . , w
′
p)

⊤ and δ′
= (δ′

1, . . . , δ
′
p)

⊤.
By Lemma 2, ∥δ′

∥∞ ≤ (σ
√
Cmin)−1 ∥δ∥∞ with probability tending to 1. So, Lemma 1 implies

Pr{∥δ′
∥∞ > (σ

√
Cmin)−1Bp(s0, n,Σ)} → 0, (A.9)

where we recall that

Bp (s0, n,Σ) = c ′ρσ
√
s0/n ln p + c ′σ min(s0, smax)ln(p)/

√
n.

For simplicity, we will denote Bp (s0, n,Σ) by Bp.
Now we break the rest of the proof into two steps: bounding maxj∈I0 |w′

j − δ′

j | from above and bounding mini∈S0 |µj +

w′

j − δ′

j | from below.

Step 1: Bounding maxj∈I0 |w′

j − δ′

j | from above. Recall Cp = ln(p2/2π ) + ln ln(p2/2π ) and let Qp = Cp + 2G, where G is an
exponential random variable with expectation 1. From Theorem 3.3 of [18], we obtain

max
j∈I0

|w′

j |
2

≤ Qp0

with probability tending to 1 as p0 → ∞. This, together with (A.9), implies that

max
j∈I0

|w′

j − δ′

j | ≤
√
Qp0 + (σ

√
Cmin)−1Bp
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with probability tending to 1 as p0 → ∞.

Step 2: Bounding mini∈S0 |µj + w′

j − δ′

j | from below. Applying Theorem 3.3 of [18] to maxj∈S0 |w′

j | and noticing that s0 ≤ p0,
we obtain

max
j∈S0

|w′

j | ≤
√
Qs0 ≤

√
Qp0 (A.10)

with probability tending to 1 as s0 → ∞. So, (A.9) and (A.10) imply

min
j∈S0

|µj + w′

j − δ′

j | ≥ min
j∈S0

|µj| −
√
Qp0 − (σ

√
Cmin)−1Bp

with probability tending to 1 as s0 → ∞.
Finally, we show the separation between the relative predictors and irrelevant ones. Consider the probability

Pr
{
min
j∈S0

|µj| −
√
Qp0 − (σ

√
Cmin)−1Bp ≤

√
Qp0 + (σ

√
Cmin)−1Bp

}
= Pr

{√
Qp0 ≥ 2−1 min

j∈S0
|µj| − (σ

√
Cmin)−1Bp

}
= Pr

{√
Cp + 2G ≥ 2−1 min

j∈S0
|µj| − (σ

√
Cmin)−1Bp

}
.

This probability converges to 0 as s0 → ∞ if

min
j∈S0

|µj|/2 − (σ
√
Cmin)−1Bp ≥ (1 + a)

√
Cp

for some constant a > 0, for which the last inequality holds when

min
j∈S0

|βj| ≥ 2n−1/2
{√

C−1
minCmaxBp (s0, n,Σ) + σ

√
Cmax(1 + a)

√
Cp0

}
.

This completes the proof. □

A.3. WLLN for multiple testing based on the pivotal statistic

From Lemma 3, we can obtain a ‘‘Weak Law of Large Numbers’’ (WLLN) for {R̄w̃(t) : p ≥ 1} and {V̄w̃(t) : p ≥ 1}. To achieve
this, we need some facts on Hermite polynomials and Mehler expansion since they will be critical to proving Lemma 5. Let
φ (x) = (2π)−1/2 exp(−x2/2) and

fρ (x, y) =
1

2π
√
1 − ρ2

exp

{
−

x2 + y2 − 2ρxy
2
(
1 − ρ2

) }
for ρ ∈ (−1, 1). For a nonnegative integer k, letHk (x) = (−1)k {φ (x)}−1dkφ (x) /dxk be the kth Hermite polynomial; see [14]
for a definition. Then Mehler’s expansion [23] gives

fρ (x, y) =

{
1 +

∞∑
k=1

ρk

k!
Hk (x)Hk (y)

}
φ (x) φ (y) . (A.11)

Further, Lemma 3.1 of [10] asserts that, for any y ∈ R,

|e−y2/2Hk (y) | ≤ C0
√
k! k−1/12e−y2/4 (A.12)

for some constant C0 > 0. With the above preparations, we have:

Lemma 5. Assume (A1) and (A2). Then

var{R̄w̃(t)} = OPr{max(1/p, λ1
√
smax)} and var{V̄w̃(t)} = OPr{max(1/p0, λ1

√
smax)}. (A.13)

If in addition assumption (A3) is valid, then

|R̄w̃(t) − E{R̄w̃(t)}| = oPr(1) and |V̄w̃(t) − E{V̄w̃(t)}| = oPr(1). (A.14)

Proof. Let ρij be the correlation between w′

i and w′

j for i ̸= j. Define sets

B1,p = {(i, j) : 1 ≤ i, j ≤ p, i ̸= j, |ρij| < 1}, B2,p = {(i, j) : 1 ≤ i, j ≤ p, i ̸= j, |ρij| = 1}.
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Namely, B2,p is the set of distinct pair (i, j) such thatw′

i andw′

j are linearly dependent. Let Cw̃,ij = cov{1(|w′

i | ≤ t), 1(|w′

j | ≤ t)}
for i ̸= j. Then

var{R̄w̃(t)} = p−2
p∑

j=1

var{1(|w′

j | ≤ t)} + p−2
∑

(i,j)∈B1,p

Cw̃,ij + p−2
∑

(i,j)∈B2,p

Cw̃,ij. (A.15)

In view of the fact that

p−2
∑

(i,j)∈B2,p

|Cw̃,ij| = O(p−2
|B2,p|) = O(p−2

∥K̂∥1)

and

p−2
p∑

j=1

var{1(|w′

j | ≤ t)} = O(p−1),

we deduce that Eq. (A.15) becomes

var{R̄w̃(t)} = O(p−1) + O(p−2
∥K̂∥1) + p−2

∑
(i,j)∈B1,p

Cw̃,ij. (A.16)

Consider the last term on the right-hand side of (A.16). Define c1,i = −t and c2,i = t . Fix a pair of (i, j) such that i ̸= j and
|ρij| ̸= 1. Since Cw̃,ij is finite and the series in Mehler’s expansion in (A.11) as a trivariate function of (x, y, ρ) is uniformly
convergent on each compact set of R × R × (−1, 1) as justified by [33], we can interchange the order the summation and
integration and obtain

Cw̃,ij =

∫ c2,i

c1,i

∫ c2,j

c1,j

fρij (x, y) dxdy −

∫ c2,i

c1,i

φ(x)dx
∫ c2,j

c1,j

φ(y)dy =

∞∑
k=1

ρk
ij

k!

∫ c2,i

c1,i

Hk(x)φ(x)dx
∫ c2,j

c1,j

Hk(y)φ(y)dy.

Given that Hk−1 (x) φ (x) =
∫ x

−∞
Hk (y) φ (y) dy for x ∈ R, we find

Cw̃,ij =

∞∑
k=1

ρk
ij

k!
{Hk−1(c2,i)φ(c2,i) − Hk−1(c1,i)φ(c1,i)}{Hk−1(c2,j)φ(c2,j) − Hk−1(c1,j)φ(c1,j)}.

Therefore,⏐⏐⏐⏐⏐⏐p−2
∑

(i,j)∈B1,p

Cw̃,ij

⏐⏐⏐⏐⏐⏐ ≤

∑
ℓ,ℓ′∈{1,2}

Ψ ∗

p,ℓ,ℓ′ ,

where

Ψ ∗

p,ℓ,ℓ′ = p−2
∑

1≤i<j≤p

∞∑
k=1

|ρij|
k
|Hk−1(cℓ,i)φ(cℓ,i)Hk−1(cℓ′,j)φ(cℓ′,j)|/k!

for ℓ, ℓ′
∈ {1, 2}. For any fixed pair

(
ℓ, ℓ′

)
, inequality (A.12) implies

Ψ ∗

p,ℓ,ℓ′ ≤ p−2
∑

1≤i<j≤p

|ρij|

∞∑
k=1

k−7/6
|ρij|

k−1 exp(−c2ℓ,i/4) exp(−c2ℓ′,j/4).

So,

Ψ ∗

p,ℓ,ℓ′ ≤ p−2
∑

1≤i<j≤p

|ρij| = O(p−2
∥K̂∥1), (A.17)

which, together with (A.17), implies⏐⏐⏐⏐⏐⏐p−2
∑

(i,j)∈B1,p

Cw̃,ij

⏐⏐⏐⏐⏐⏐ = O(p−2
∥K̂∥1). (A.18)

Combining (A.16) and (A.18) with the result ∥p−2K̂∥1 = OPr(λ1
√
smax) from Lemma 3 gives

var{R̄w̃(t)} = O(1/p) + OPr(λ1
√
smax). (A.19)

By restricting the expansion on the right-hand side of (A.15) to the index set (i, j) ∈ I0 × I0 for i ̸= j and to I0 for j,
changing p there into p0, and following arguments almost identical to those leading to (A.19), we see that var{V̄w̃(t)} =

O(1/p0)+OPr(λ1
√
smax). Therefore, (A.13) holds. Finally, applying Chebyshev’s inequality to R̄w̃ (t) and V̄w̃(t) with the bounds

in (A.13) gives (A.14). This completes the proof. □
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A.4. Proof of Theorem 2

Recall the decomposition of zj in (A.8),

Rz(t) =

p∑
j=1

1(|zj| > t), Vz(t) =

∑
j∈I0

1(|zj| > t).

Define

Rw̃(t) =

p∑
j=1

1(|w′

j | > t), Vw̃(t) =

∑
j∈I0

1(|w′

j | > t).

Further, define the following averages:

R̄z(t) = Rz(t)/p, R̄w̃ (t) = Rw̃(t)/p, V̄z (t) = Vz(t)/p0, V̄w̃ (t) = Vw̃(t)/p0.

From Lemmas 4 and 5, we have |V̄z(t) − V̄w̃(t)| = oPr(1) and |V̄w̃(t) − E{V̄w̃(t)}| = oPr(1). So,

|V̄z(t) − E{V̄w̃(t)}| = oPr(1). (A.20)

Next, we show that R̄z(t) is bounded away from 0 uniformly in p with probability tending to 1. By their definitions,
R̄z(t) ≥ p0V̄z(t)/p almost surely, and p0/p is uniformly bounded in p from below by a positive constant π∗. Then

Pr[R̄z(t) > π∗E{V̄w̃(t)}/2] → 1,

where E{V̄w̃(t)} = 2
∑

j∈I0
Φ (−t) /p0 = 2Φ (−t) . Therefore,

Pr{R̄z(t) > π∗Φ(−t)} → 1. (A.21)

Combining (A.20) and (A.21) gives |Vz(t)/Rz(t) − E{Vw̃(t)}/Rz(t)| = oP (1), and the result in (8) follows because p−p0 = s0
and s0/p = o(1). This completes the proof. □

A.5. Proof of Corollary 1

By (A.21), R̄z(t) is bounded away from 0 uniformly in p with probability tending to 1. So, it suffices to show

E{Vw̃(t)}/Rz (t) − E{Vz(t)}/E{Rz(t)} = oPr(1). (A.22)

Given that E{V̄z(t)} − E{V̄w̃(t)} = oPr(1) from Lemma 4, (A.22) follows once we show

R̄z (t) − E{R̄z(t)} = oPr(1). (A.23)

To this end, we only need to show var{R̄z (t)} = oPr(1), which implies (A.23). Observe that

R̄z (t) = p0V̄z(t)/p + (s0/p) × 1(|w′

j − δ′

j +
√
nβj| > t)/s0 (A.24)

and s0/p = o(1). Thus we see that the second summand in (A.24) converges almost surely to 0 and that var{R̄z (t)} −

var{V̄z(t)} = oPr(1). From Lemmas 4 and 5, we have var{V̄z (t)} − var{V̄w̃ (t)} = oPr(1) and var{V̄w̃ (t)} = oPr(1). Therefore,
var{R̄z (t)} = oPr(1). This completes the proof. □

A.6. Proof of Corollary 2

First of all, the definitions of tα and F̂DP (tα) imply

Pr{F̂DP (tα) ≤ α} = 1 (A.25)

and Pr {2pΦ(−tα) ≤ αRz(t) ≤ αp} = 1. Then Pr {Φ(−tα) ≤ α/2} = 1 for a small constant α, which implies that tα does not
go to 0 as p → ∞. So, it suffices to consider positive constant values of tα .

Given that the joint distribution of (z1, . . . , zp) and that of (w′

1, . . . , w
′
p) remain the same conditional on tα , identical

arguments that led to Theorems 1 and 2 give

F̂DP (tα) − FDPz (tα) = oPr(1) and F̂DP (tα) − mFDRz (tα) = oPr (1) , (A.26)

both conditional on tα . So, for any fixed constant a > 0,

lim
p→∞

Pr
{
|F̂DP(tα) − FDPz(tα)| > a

}
= lim

p→∞
E
[
E
[
1{|F̂DP(tα) − FDPz(tα)| > a}|tα

]]
= E

[
lim
p→∞

E
[
1{|F̂DP (tα) − FDPz (tα)| > a}|tα

]]
(A.27)
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= 0 (A.28)

where (A.27) follows from Lebesgue’s Dominated Convergence Theorem and (A.28) from (A.26). Therefore, (A.25) and (A.28)
together imply Pr {FDPz (tα) ≤ α} → 1. By arguments that are almost identical to those given above, we also see that

lim
p→∞

Pr{|F̂DP(tα ) − mFDRz(tα)| > a} = 0,

which together with (A.25) implies Pr {mFDRz (tα) ≤ α} → 1.
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