期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:185
Locally isometric embeddings of quotients of the rotation group modulo finite symmetries
Article
Hielscher, Ralf1  Lippert, Laura1 
[1] Tech Univ Chemnitz, Fac Math, Chemnitz, Germany
关键词: Euclidean embedding;    Locally isometric embedding;    Rotation group;   
DOI  :  10.1016/j.jmva.2021.104764
来源: Elsevier
PDF
【 摘 要 】

The analysis of manifold-valued data using embedding based methods is linked to the problem of finding suitable embeddings. In this paper we are interested in embeddings of quotient manifolds SO(3)/S of the rotation group modulo finite symmetry groups. Data on such quotient manifolds naturally occur in crystallography, material science and biochemistry. We provide a generic framework for the construction of such embeddings which generalizes the embeddings constructed in Arnold et al. (2018). The central advantage of our larger class of embeddings is that it includes locally isometric embeddings for all crystallographic symmetry groups. (C) 2021 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2021_104764.pdf 1246KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次