期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:116
Properties and applications of Fisher distribution on the rotation group
Article
Sei, Tomonari1  Shibata, Hiroki2  Takemura, Akimichi2,3  Ohara, Katsuyoshi4  Takayama, Nobuki3,5 
[1] Keio Univ, Dept Math, Tokyo 108, Japan
[2] Univ Tokyo, Grad Sch Informat Sci & Technol, Dept Math Informat, Tokyo 1138654, Japan
[3] CREST, JST, Tokyo, Japan
[4] Kanazawa Univ, Fac Math & Phys, Kanazawa, Ishikawa 9201192, Japan
[5] Kobe Univ, Dept Math, Kobe, Hyogo, Japan
关键词: Algebraic statistics;    Directional statistics;    Holonomic gradient descent;    Maximum likelihood estimation;    Rotation group;   
DOI  :  10.1016/j.jmva.2013.01.010
来源: Elsevier
PDF
【 摘 要 】

We study properties of Fisher distribution (von Mises-Fisher distribution, matrix Langevin distribution) on the rotation group SO(3). In particular we apply the holonomic gradient descent, introduced by Nakayama et al. (2011) [16], and a method of series expansion for evaluating the normalizing constant of the distribution and for computing the maximum likelihood estimate. The rotation group can be identified with the Stiefel manifold of two orthonormal vectors. Therefore from the viewpoint of statistical modeling, it is of interest to compare Fisher distributions on these manifolds. We illustrate the difference with an example of near-earth objects data. (C) 2013 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2013_01_010.pdf 513KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次