期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:168
Efficient likelihood computations for some multivariate Gaussian Markov random fields
Article
Ippoliti, L.1  Martin, R. J.1  Romagnoli, L.2 
[1] Univ G dAnnunzio, Dipartimento Econ, Viale Pindaro 42, I-65127 Pescara, Italy
[2] Univ Molise, Dipartimento Econ, Via F De Sanctis, I-86100 Campobasso, Italy
关键词: Conditional autoregressive model;    Gaussian Markov random fields;    Lattice data;    Maximum likelihood estimation;    Multivariate observations;    Regional data;   
DOI  :  10.1016/j.jmva.2018.07.007
来源: Elsevier
PDF
【 摘 要 】

Data collected from spatial locations are often multivariate. Gaussian conditional autore-gressive (CAR) models, also known as Gaussian Markov random fields, are frequently used to analyze such continuous data, or as models for the parameters of discrete distributions. Two difficulties in Gaussian maximum likelihood estimation are ensuring that the parameter estimates are allowable values, and computing the likelihood efficiently. It is shown here that, for some commonly-used multivariate CAR models, checking for allowable parameter values can be facilitated, and the likelihood can be computed very quickly. (C) 2018 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2018_07_007.pdf 558KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:0次