期刊论文详细信息
Journal of Biometrics & Biostatistics
Spatial Gaussian Markov Random Fields: Modelling, Applications and Efficient Computations
article
Yu Ryan Yue1  Xiao-Feng Wang2 
[1] Department of Statistics and CIS, Zicklin School of Business, Baruch College, The City University of New York;Department of Quantitative Health Sciences / Biostatistics Section, Cleveland Clinic Lerner Research Institute
关键词: Gaussian Markov random fields;    Markov chain Monte Carlo;    spatial statistics;    Cholesky factorization;    Integrated nested laplace approximation;   
DOI  :  10.4172/2155-6180.1000e128
来源: Hilaris Publisher
PDF
【 摘 要 】

A powerful modelling tool for spatial data is the framework of Gaussian Markov random fields (GMRFs), which are discrete domain Gaussian random fields equipped with a Markov property. GMRFs allow us to combine the analytical results for the Gaussian distribution as well as Markov properties, thus allow for the development of computationally efficient algorithms. Here we briefly review popular spatial GMRFs, show how to construct them, and outline their recent developments and possible future work.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202307140003755ZK.pdf 371KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:1次