科技报告详细信息
Bayesian Uncertainty Quantification in Predictions of Flows in Highly Heterogeneous Media and Its Applications to the CO2 Sequestration
Efendiev, Yalchin1  Datta-Gupta, Akhil1  Jafarpour, Behnam1  Mallick, Bani1  Vassilevski, Panayot1 
[1] Texas A & M Univ., College Station, TX (United States)
关键词: subsurface flow;    transport;    porous media;    heterogeneous;    Bayesian;    prior modeling;    posterior;    Markov chain Monte Carlo;    multiscale;   
DOI  :  10.2172/1225386
RP-ID  :  DOE-TAMU--SC0004965.
PID  :  OSTI ID: 1225386
Others  :  Other: 19795754068
学科分类:数学(综合)
美国|英语
来源: SciTech Connect
PDF
【 摘 要 】

In this proposal, we have worked on Bayesian uncertainty quantification for predictions of fows in highly heterogeneous media. The research in this proposal is broad and includes: prior modeling for heterogeneous permeability fields; effective parametrization of heterogeneous spatial priors; efficient ensemble- level solution techniques; efficient multiscale approximation techniques; study of the regularity of complex posterior distribution and the error estimates due to parameter reduction; efficient sampling techniques; applications to multi-phase ow and transport. We list our publications below and describe some of our main research activities. Our multi-disciplinary team includes experts from the areas of multiscale modeling, multilevel solvers, Bayesian statistics, spatial permeability modeling, and the application domain.

【 预 览 】
附件列表
Files Size Format View
387KB PDF download
  文献评价指标  
  下载次数:28次 浏览次数:65次