Final technical report for project titled Quantitative Characterization of Cell Aggregation/Adhesion as Predictor for Distribution and Transport of Microorganisms in Subsurface Environment | |
Gu, April Z1  Wan, Kai-tak2  | |
[1] Northeastern University;Northeastern Univeristy | |
关键词: bioremediation; microbial transport; pollutants; porous media; modeling; | |
DOI : 10.2172/1151417 RP-ID : DOE-NEU2009 PID : OSTI ID: 1151417 |
|
学科分类:环境科学(综合) | |
美国|英语 | |
来源: SciTech Connect |
【 摘 要 】
This project aims to explore and develop enabling methodology and techniques for nano-scale characterization of microbe cell surface contact mechanics, interactions and adhesion quantities that allow for identification and quantification of indicative properties related to microorganism migration and transport behavior in porous media and in subsurface environments. Microbe transport has wide impact and therefore is of great interest in various environmental applications such as in situ or enhanced subsurface bioremediation,filtration processes for water and wastewater treatments and protection of drinking water supplies. Although great progress has been made towards understanding the identities and activities of these microorganisms in the subsurface, to date, little is known of the mechanisms that govern the mobility and transport of microorganisms in DOE???s contaminated sites, making the outcomes of in situ natural attenuation or contaminant stability enhancement unpredictable. Conventionally, movement of microorganisms was believed to follows the rules governing solute (particle) transport. However, recent studies revealed that cell surface properties, especially those pertaining to cell attachment/adhesion and aggregation behavior, can cause the microbe behavior to deviate from non-viable particles and hence greatly influence the mobility and distribution of microorganisms in porous media.This complexity highlights the need to obtain detailed information of cell-cell and cell-surface interactions in order to improve and refine the conceptual and quantitative model development for fate and transport of microorganisms and contaminant in subsurface. Traditional cell surface characterization methods are not sufficient to fully predict the deposition rates and transport behaviors of microorganism observed. A breakthrough of methodology that would allow for quantitative and molecular-level description of intrinsic cell surface properties indicative for cell-surface interactions is essential for the field. To tackle this, we have developed a number of new Bio-nanomechanical techniques, including reflection interference contrast microscopy (RICM) and bio-AFM (Atomic Force Microscopy), for cell adhesion-detachment measurement of the long-range surface interactions, in combination with mathematical modeling, which would allow us to characterize the mechanical behavior from single cell to multi-cell aggregate, critical thresholds for large scale coaggregation and transportation of cells and aggregates in the presence of long range inter-surface forces etc. Although some technical and mathematical challenges remain, the preliminary results promise great breakthrough potential. In this study, we investigated the cellular surface characteristics of representative bio-remediating microorganisms relevant to DOE IFRC (Integrated Field-Scale Subsurface Research Challenges) sites and their transport behaviors in porous media, aiming to draw a groundbreaking correlation between the micro-scale genetic and biological origin-based cell surface properties, the consequent mechanical adhesion and aggregation behaviors, and the macro-scale microbial mobility and retention in porous media, which are unavailable in the literature. The long-term goal is to significantly improve the mechanistic and quantitative understanding of microbial mobility, sorption, and transport within reactive transport models as needed to manipulate subsurface contaminant fate and transport predictions.
Files | Size | Format | View |
---|---|---|---|
514KB | TEXT | download |