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Efficient likelihood computations for some multivariate
Gaussian Markov random fields
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Abstract

Data collected from spatial locations are often multivariate. Gaussian conditional autoregressive (CAR) models, also
known as Gaussian Markov random fields, are frequently used to analyze such continuous data, or as models for
the parameters of discrete distributions. Two difficulties in Gaussian maximum likelihood estimation are ensuring
that the parameter estimates are allowable values, and computing the likelihood efficiently. It is shown here that, for
some commonly-used multivariate CAR models, checking for allowable parameter values can be facilitated, and the
likelihood can be computed very quickly.

Keywords: Conditional autoregressive model, Gaussian Markov random fields, Lattice data, Maximum likelihood
estimation, Multivariate observations, Regional data.
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1. Introduction

Large amounts of essentially continuous spatial data are associated with the nodes or interiors of a regular rect-
angular lattice, or with irregularly spaced sites or irregularly shaped regions. For example, pixellated images are as-
sociated with the interiors of rectangular lattices, and some spatial sampling is at rectangular grid points; in contrast,
epidemiological, ecological and environmental data are usually associated with irregular sites or regions. Frequently,
there is more than one variable of interest. Spatial data observed at a few time points can also be treated as multivariate.

It is often reasonable to use, possibly after transformation, a Gaussian distribution to model continuous data.
Gaussian models are also frequently used in hierarchical modeling of the parameters of discrete models, such as the
Poisson and Logistic. Henceforth only Gaussian models are considered, which are defined by their mean and variance
structure. These can be directly specified, but the likelihood can then be difficult to obtain. An alternative specification,
which is considered here, and frequently used in applications, is that of conditional autoregressive (CAR) models, also
known as Gaussian Markov random fields (GMRFs); see, e.g., Section 6.3.2 of [6] or [20]. These CAR models specify
the mean and variance of the values at a site in terms of the values of a set, usually small, of nearby spatial sites.

For lattice data, the number of sites can be very large, and models for the mean-corrected observations are usually
simplified, e.g., taken to be (approximately) stationary, or homogeneous. Several sets of dependence neighborhoods
can be included, each with an associated parameter.

Many simple models with few parameters have been proposed for multivariate CARs on irregular regions. Ex-
amples are [8, 11–13, 18, 22]. In these papers, a simple form for the spatial dependence is used, based on a 0/1
neighborhood adjacency matrix. For irregular regional (or areal) data, the number of sites is often not large, with
some models implying that both the strength of the dependence and the conditional variance vary with the number of
neighbors.
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In both situations, it can be difficult to check if the model parameters are allowable, or equivalently if the resulting
variance matrix is positive definite (pd). Moreover, Gaussian maximum likelihood estimation can be difficult and time
consuming. In Section 2, general multivariate CAR models are discussed and compared, and a simplified additive
model is proposed. This model helps to give a unification and clarification of many of the regional models that
have been proposed. A technical result in Section 3 is used to consider some situations in which checking for pd
of multivariate CARs, and likelihood evaluation, can be efficiently carried out. For irregular regions (Section 4.1),
the results generalize the model of [11]. For the regular rectangular lattice (Section 4.2), the results can be applied
to models that are multivariate extensions of commonly-used univariate CARs — those that are reversible and have
reflection-symmetric neighbor dependence. In both cases, the theory provides an extremely fast likelihood evaluation
with a large number of sites. Two real data sets are used in Section 5 to illustrate the results, and some possible
extensions are discussed in Section 6. Some examples and additional information are given in the Appendix.

2. Preliminaries

In this section, some initial definitions are given, and some notation introduced. Two different forms of the
multivariate CAR, and two different data orderings, are compared and linked. Under certain assumptions about the
variance structure, a useful additive version of the general model is developed.

2.1. Definitions and notation

It is assumed without loss of generality that the random vector y has been mean-corrected, E(y) = 0, and that it
is modeled solely by a Gaussian multivariate CAR with no measurement error. Provided they are consistent, only
conditional means and variances need to be specified.

In general, if the index set of y is partitioned as a ∪ b, with y partitioned as (y>a y>b )>, and the precision matrix
P = {var(y)}−1 is correspondingly partitioned, then

var(ya | yb) = P−1
aa and E(ya | yb) = E(ya) + P−1

aa Pab{yb − E(yb)}. (1)

Conversely, var(ya | yb) and E(ya | yb) essentially specify Paa and Pab. Usually, for CAR models, set ‘a’ is small and
most elements of Pab are zero.

Suppose there are n sites (used generally to include regions), with p variables observed at each site, and that yi, j

denotes the observation on variable i ∈ {1, . . . , p} at site j ∈ {1, . . . , n}. Assume that there are no missing values. Let
Y = (yi, j) = (y1 · · · yn) be the p × n matrix of observations. Column j of Y, y j = (y1, j · · · yp, j)>, is the vector of the p
values at site j. Row i of Y contains the n observations for variable i.

Let y(s) = (y>1 · · · y>n )> = vec(Y) denote the np-vector of p-variate observations ordered (consistently) by site. Let
var(y(s)) = V(s), and let P(s) = V−1

(s) denote the np×np precision matrix of y(s). Let the F j j′ be p× p matrices with (i, i′)-
element f j j′,ii′ , where f j j,ii = −1, and let F be the np×np matrix with ( j, j′)-block F j j′ . Let the T1, . . . ,Tn be symmetric
p× p pd matrices with (i, i′)-element τ j,ii′ , and let H j = T−1

j = (η j,ii′ ). Assume P(s) = diag(H1, . . . ,Hn) times−F, with
V(s) = −F−1 × diag(T1, . . . ,Tn). Then |P(s)| = | − F| ×∏

j |H j|, and P(s) is pd if and only if −F is pd. The T j (or H j)
and the F j j′ usually depend on parameters, and assumptions are necessary to reduce their total possible number, and
to ensure P(s) is symmetric and pd.

The observations can alternatively be ordered (consistently) by variable rather than by site. Let y(v) denote the
vector of observations in variable order, so that y(v) = vec(Y>). Let V(v) = var(y(v)), with P(v) = V−1

(v). Finally, let Jp

denote a p × p matrix of ones.

2.2. Two specifications of a multivariate CAR

Univariate CARs (p = 1) are defined by the conditional distributions of the variable at each site given the values
at all the other sites. There are two possible generalizations of this to multivariate CARs (p > 1). The more usual
generalization [15], denoted the mvCAR form here, considers the n conditional distributions y j|y− j of the p-vector
variable y j at each site j given y− j, where y− j denotes the values y j′ at all other sites, i.e.,

{
y j′ : j′ , j

}
. The other

generalization, as in [13], the extended CAMCAR model in Section 5 of [21] and the model of [22], and Ippoliti et al.
[10], denoted the uvCAR form here, considers the np individual conditional distributions yi, j|y−(i, j) of each variable at
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each site, where y−(i, j) denotes all other values than yi, j, i.e., {yi′, j′ : (i′, j′) , (i, j)}. Hence the uvCAR form can be
regarded as a univariate CAR over np ‘sites’ (i.e., n sites for each variable, which can be pictured as stacked in an
extra dimension). From Eq. (1) and its converse, it is clear that the two forms are just different ways of parametrizing
the same multivariate CAR model. One form may sometimes be more convenient to specify than the other.

The mvCAR form has
E(y j|y− j) =

∑

j′, j

F j j′y j′ and var(y j|y− j) = T j ,

where F j j = −Ip for all j, and the conditional variance T j = H−1
j is in general not diagonal. Then the ( j, j′) block of

P(s) is −H jF j j′ , and symmetry of P(s) requires that H jF j j′ = F>j′ jH j′ , or equivalently T jF>j′ j = F j j′T j′ for all j , j′.
The uvCAR form has

E(yi, j|y−(i, j)) =
∑

(i′, j′),(i, j)

f j j′,ii′yi′, j′ and var(yi, j|y−(i, j)) = τ j,ii = η−1
j,ii,

with F j j non-diagonal, but T j = H−1
j is diagonal. Then P(s) has {( j − 1)p + i, ( j′ − 1)p + i′}-element −η j,ii f j j′,ii′ , and

symmetry of P(s) requires that η j,ii f j j′,ii′ = η j′,i′i′ f j′ j,i′i for all i, i′, j, j′.
Note that when p > 1 the symmetry requirement on P(s) usually implies that the conditional means E(yi, j|y−(i, j)) or

E(y j|y− j), and hence F, cannot simply be specified; it is also necessary to take account of the conditional variances.
Given P(s), the mvCAR form can be obtained by grouping the p rows and columns corresponding to each site,

and the uvCAR form is obtained by considering each row of P(s). Observe that the within-site cross-dependences
η j,ii f j j,ii′ in the uvCAR form correspond to off-diagonal terms in T j (or H j) in the mvCAR form, and vice versa. This
is illustrated in Example A in Appendix A.1.

2.3. Some simplified models

The general model requires simplification. A special case of the mvCAR form has F j j′ = f j j′Ip with f j j = −1 for
all j, where f j j′ for j , j′ may be a linear combination of parameters, i.e., f j j′,ii′ = f j j′ if i = i′, and 0 otherwise. Then
F = F0 ⊗ Ip, where F0 = ( f j j′ ). Symmetry of P(s) in this case requires that f j j′H j = f j′ jH j′ , or f j′ jT j = f j j′T j′ , for all
j , j′. The separable (or factorized) case has F0 symmetric, with T j = T = (τii′ ) and H j = H = (ηii′ ) for all j, so that
P(s) = −F0 ⊗H. The uvCAR form of the separable case has f j j′,ii′ = f j j′ηii′/ηii and var(yi, j|y−(i, j)) = η−1

ii .
More generally, it is often reasonable to assume in the mvCAR form that the conditional variance T j is either con-

stant, or only varies over sites by a constant, so that T j = w−1
0, jT and H j = w0, jH for all j. If W0 = diag(w0,1, . . . ,w0,n),

then the p× p diagonal blocks of P(s) are W0 ⊗H. To include the uvCAR form with τ j,ii = τii for all j, replace W0 ⊗H
by −W0 ⊗Φ0, where Φ0 = HA0, with A0 and Φ0 non-singular. In the mvCAR form A0 = −Ip, while in the uvCAR
form H is the diagonal HD = diag(η11, . . . , ηpp) and A0 is −Ip plus some non-zero off-diagonal terms. Many models
that have been proposed with this assumption can be expressed in the following way.

With W0 and Φ0 as above, suppose the Wk for k ∈ {1, . . . , kmax} are n × n matrices of known constants, with the
entries of Wk relating to the kth group of ‘neighbors’. Usually the Wk for k > 0 have zeros on the diagonal, and for
k ≥ 0 their non-zero entries are non-overlapping, i.e., Wk ◦Wk′ = 0 for 0 ≤ k < k′, where ◦ denotes the Hadamard (or
Schur) element-wise product. Suppose also that the p × p matrices Ak = (αk,ii′ ), k ≥ 0, contain parameters relating to
the cross-dependences of the variables at a site with those in the kth group, with α0,ii = −1 for all i. Let Φk = (φk,ii′ )
denote HAk, and let M(s) be an np × np matrix, with P(s) = M>

(s)R(s)M(s). It is assumed here that M(s) is diagonal,
M(s) = diag(M(s),1, . . . ,M(s),n), and the M(s), j are diagonal p × p matrices of known constants relating to the variables
at site j. Then, R(s) is expressed as an additive model, viz.

R(s) = (In ⊗H)

−
kmax∑

k=0

(Wk ⊗ Ak)

 = −
kmax∑

k=0

(Wk ⊗Φk). (2)

In many cases M(s) = Inp, so that P(s) = R(s). Symmetry of P(s) is ensured if Φk is symmetric whenever Wk is
symmetric, and, if a Wk is asymmetric then the second sum also includes W>

k ⊗Φ>k , i.e., the first sum includes both
Wk ⊗Ak and W>

k ⊗H−1A>k H. If k2 is the number of asymmetric pairs in Eq. (2), then the maximum number of ‘free’
parameters in R(s) is (1 + kmax)p(p + 1)/2 − pk2.
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Provided the Wk, k > 0, have zeros on the diagonal, Eq. (2) implies that

E(y j|y− j) = −(w0, jA0M(s), j)−1
∑

j′, j

∑

k>0

wk, j j′AkM(s), j′y j′

and
var(y j|y− j) = −(w0, jM(s), jHA0M(s), j)−1 = −(w0, jM(s), jΦ0M(s), j)−1.

Thus the choice of M(s) affects both the conditional means and the conditional variances.
For the uvCAR form, the off-diagonal elements of A0 are the within-site dependence parameters between the

variables. If M(s) = Inp and W0 = In, then T j = T and H j = H for all j, and the conditional variance var(y j|y− j) does
not depend on the site. If R(s) in Eq. (2) is separable with Ak = αkIp (where α0 = −1), then R(s) = −F0 ⊗ H, with
F0 =

∑kmax
k=0 αkWk. If any Wk, k > 0, have non-zero diagonal elements, as for the model of [12]; see Section 2.4, or the

reflective boundary conditions in Section 4.2.1, adjustments must be made to E(y j|y− j) and var(y j|y− j) using Eq. (1).
Example B in Appendix A.1 gives a simple illustration.

If A0 = −Ip, an alternative form of Eq. (2) has also been used in regional modeling, which makes symmetry arise
more naturally, but also affects the interpretation of the parameters in the Ak. This has RS,(s), where

RS,(s) = (In ⊗H1/2)

−
kmax∑

k=0

(Wk ⊗ Ak)

 {In ⊗ (H1/2)>} = −
kmax∑

k=0

(Wk ⊗ΦS,k) (3)

where H1/2 is any ‘square root’ of H such that H1/2(H1/2)> = H (unique and symmetric if H = HD), and where ΦS,k
denotes H1/2Ak(H1/2)>. Symmetry of RS,(s) is ensured if Ak is symmetric whenever Wk is symmetric, and, for each
asymmetric Wk the sum also includes a term W>

k ⊗ A>k .

2.4. Applications of the additive model
On a regular rectangular n1 × n2 lattice (n = n1n2), homogeneous (approximately stationary) models can be

postulated using the mvCAR form with T j = T for all j. Then the usual model is Eq. (2) with M(s) = Inp, W0 = In,
and for k > 0 the Wk are neighbor-incidence matrices for the kth group of lags (i.e., 0/1 matrices with ( j, j′) element
1 if site j′ is separated from site j by a lag in the kth group); see Section 4.2.

Univariate CAR regional models have usually based dependence on some function of neighborhood — adjacency,
length of common boundary, distance between sites or regional centres, etc. These assumptions are almost always
arbitrary and unrealistic [17]. Multivariate CAR regional models have usually been based on W, the symmetric
regional neighbor-incidence matrix, i.e., the ( j, j′) element of W is 1 if regions j and j′ are adjacent. Some recent
generalizations have split W into two parts W = WU + W>

U, arbitrarily using its upper and lower triangular parts, WU
and WL = W>

U.
To allow the conditional variance to decrease with the number of neighbors, W0 is often taken as the diagonal

matrix D = diag(d1, . . . , dn) = diag(d), where d = W1n, i.e., d j is the jth row sum of W. Then H j = d jH if A0 = −Ip.
A consequence is that the conditional correlations between neighboring sites j, j′ are approximately proportional to
(d jd j′ )−1/2. Note that those given by [11] only consider the conditional distributions of the two relevant variables, and
not that of the 2p variables at the two sites.

An alternative to taking W0 = D is to use M(s) with W0 = In and the M(s), j being precision measures for site j;
see Section 2.3. A possible advantage is that the neighbor conditional correlations are then constant over the sites; see
[21, 22]. A special case for M(s) is the Kronecker product Ms ⊗Mv of a diagonal n × n matrix Ms of site constants
and a diagonal p × p matrix Mv of constants relating to the variables, possibly with Ms = In, or Mv = Ip.

Some CAR models that have been proposed for regional data are discussed in Appendix A.2. Note that in the
original proposals a wide range of different notation has been used, and protracted derivations given for relatively
simple and similar models. To allow comparisons between them, the models have been reparametrized. Henceforth,
except where otherwise stated, it is assumed that if M(s) , Inp, then M(s) = Ms ⊗Mv. Then M(s) can, if desired, be
assimilated into the additive Eqs. (2)–(3) by suitably redefining the Φk or the Ak, or the Wk.

Note that the marginal distribution of each variable in a separable multivariate CAR is a univariate CAR, but it
is clear from Eqs. (2)–(3) that for a general multivariate CAR the marginal distributions are not CARs. On a regular
rectangular lattice they are Rational Spectral Density models; see [9].

4



2.5. Ordering observations by variables

Although the mvCAR form is defined by site ordering, it is often more convenient to consider the model for the
observations ordered by variables. This ordering clearly shows the relevant contribution of each variable and the joint
contributions of pairs of variables. Most of the models for regional data have been given this way. The two orderings
are connected by the np × np permutation matrix Z, where Z> = Z−1 = (In ⊗ e1 · · · In ⊗ ep), and ei is a p-vector with
1 in the ith position and zero elsewhere.

Then y(v) = Zy(s), and y(s) = Z>y(v). Hence V(v) = ZV(s)Z>, V(s) = Z>V(v)Z, P(v) = ZP(s)Z>, and P(s) = Z>P(v)Z.
Further, if B1 is p×p and B2 is n×n, then Z>(B1⊗B2)Z = B2⊗B1. Hence if V(s) (or P(s)) is expressed as

∑
akB2,k⊗B1,k

for scalar ak with all B1,k being p × p, and all B2,k being n × n, then V(v) (or P(v)) =
∑

akB1,k ⊗ B2,k. In particular, the
separable model has P(v) = −H ⊗ F0. Henceforth, variable ordering is assumed, and the suffix (v) is dropped.

If T j = w−1
0, jT for all j, the general additive model (2) with the restriction on M(s) becomes

P = (Mv ⊗Ms)R(Mv ⊗Ms),

with

R = (H ⊗ In)

−
kmax∑

k=0

(Ak ⊗Wk)

 = −
kmax∑

k=0

(Φk ⊗Wk). (4)

The alternative form (3) uses RS, with

RS = (H1/2 ⊗ In)

−
kmax∑

k=0

(Ak ⊗Wk)


{
(H1/2)> ⊗ In

}
= −

kmax∑

k=0

(ΦS,k ⊗Wk). (5)

Then the n × n submatrices of R are Rii′ = −∑kmax
k=0 φk,ii′Wk, and those of RS are RS,ii′ = −∑kmax

k=0 φS,k,ii′Wk for all
i, i′ ∈ {1, . . . , p}.

2.6. Additive model with symmetric components

Although some models (see Appendix A.2) do use asymmetric components Wk in Eqs. (2)–(3) and (4)–(5), many
models in common use have all the Wk symmetric. It is assumed here henceforth, apart from the torus boundary
assumption in Section 4.2, that this holds.

Then with Eq. (4), symmetry of P is ensured if Φk = HAk is symmetric for all k, i.e., if A>k H = HAk, or
TA>k = AkT. There are many ways to ensure this holds, essentially specifying a symmetric matrix HA,k and setting
Ak = H−1HA,k. With an initial A∗k, one possibility is to modify the lower triangular part of A∗k to ensure that HA∗k is
symmetric. Another possibility is to use HA,k = (HA∗k + A∗>k H)/2. A method used in simple regional models has a
symmetric A∗k, and HA,k = H ◦ A∗k.

The resulting Ak may be difficult to interpret. Although it does not directly give the conditional means, it may be
simpler to specify the Φk. Then Φ0 = HA0 gives H as −Φ0 in the mvCAR form, and −diag(φ0,11, . . . , φ0,pp) in the
uvCAR form, with Ak = H−1Φk for k ≥ 0.

With Eq. (5), symmetry of P only needs the Ak to be symmetric, but these may be difficult to interpret as the
conditional mean E(y j|y− j) now involves terms in {A0(H1/2)>}−1Ak(H1/2)>y j′ . Again, it may be simpler to specify the
ΦS,k, with H obtained as above, but using ΦS,0 instead of Φ0, and Ak = H−1/2ΦS,k(H−1/2)> for k ≥ 0.

3. Calculating the Gaussian likelihood and checking that P is positive definite

This section is concerned with Gaussian maximum likelihood estimation of multivariate CAR models. If P is
expressed as in Eqs. (4)–(5) in terms of the Φk or ΦS,k, then the usual result for CARs holds; maximum likelihood
estimation equates sample and population correlations for each k > 0, although this result is rarely useful in practice.
The standard method requires minimization of y>Py− ln(|P|), which has two main difficulties. First, the minimization
must be over the valid range of values for the parameters (i.e., the estimated P must be pd). Second, the evaluation of
|P| and/or of y>Py, can be very slow. Note that it may be simpler to estimate P in terms of the Φk or ΦS,k, and then
transform back to H and the Ak; see Section 2.6.
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Suppose that R1 and R2 are np × np matrices, and that P = R1RcR2. Then |P| = |R1| × |R2| × |Rc|, and the pd
conditions are those on Rc together with those on R1 and R2. If u1 = R>1 y and u2 = R2y then y>Py = u>1 Rcu2. If Rc
is partitioned, then using standard results may be quicker for obtaining |Rc|. For example, if Rc is partitioned into 2×2
components by a and b, as in Section 2.1, then |Rc| = |Rc,a| × |Rc,bb.a|, where Rc,bb.a denotes Rc,bb −Rc,baR−1

c,aaRc,ab, and
Rc is pd if and only if both Rc,aa and Rc,bb.a are pd. If the partitioned parts are conformable, as when the p × p Rc,ii′

with i, i′ ∈ {1, . . . , p}, are used, then |Rc| = |Rc,11Rc,22.1| for p = 2, etc. The relevant determinants can be evaluated
directly, or as the square of the product of the diagonal elements of the Cholesky decomposition (usually quicker),
or as the product of the eigenvalues (usually slowest if the eigenvalues are computed, quickest if the eigenvalues are
known). If further the components all commute, then the usual determinant formula applies to the Rc,ii′ , e.g., if p = 2,
|Rc| = |Rc,11Rc,22 − Rc,12Rc,21|. However, in this latter case, there is a much quicker method.

Lemma 1 below, and Corollaries 1 and 2, can be used to show that if all the Rc,ii′ commute, there is a direct way
to obtain the conditions for Rc to be pd, and a very fast way to obtain |Rc|, and to evaluate y>Py when R1 = R>2 , with
R1 fixed.

Lemma 1. Suppose the real np × np matrix Q is partitioned into n × n blocks Qii′ with i, i′ ∈ {1, . . . , p}, and that
the Qii′ commute. Let the unitary S = (s1 . . . sn) be such that Qii′ = SΘii′S−1, where the Θii′ can be taken as upper
triangular with the eigenvalues θii′, j on the diagonal, matched appropriately. Then the eigenvalues of Q are those of
the p × p matrices C1, . . . ,Cn, where C j has (i, i′)-element θii′, j.

Proof. Since Qii′ = SΘii′S−1, it follows that Q = (Ip ⊗ S)Θ(Ip ⊗ S−1), where Θ is the np × np matrix with blocks
Θii′ . Thus Q and Θ are similar (conjugate), their eigenvalues are the same, and |Q| = |Θ|. But, since the Θii′ are upper
triangular, Θ can be permuted into ZΘZ>, which is block upper triangular with the blocks C j on the diagonal. �

Remark. In most applications in Section 4, the Qii′ are all symmetric, or if not symmetric they do not have re-
peated eigenvalues. Then the Qii′ are simultaneously diagonalizable, so that s j is the right eigenvector of Qii′ with
corresponding eigenvalue θii′, j, i.e., Qii′s j = θii′, js j. Then Qii′ = SΘii′S−1, where Θii′ = diag(θii′,1, . . . , θii′,n).

Corollary 1. Q in Lemma 1 is pd if and only if all the C j are pd, and |Q| = ∏
j |C j|, so that only the p × p matrices

C j need to be considered. Each C j is pd if and only if all its eigenvalues are positive, or equivalently if and only if all
its principal minors are positive.

Note that the eigenvalues of the C j are not needed if only |Q| is required. Thus when p = 2, |Q| = ∏
j(θ11, jθ22, j −

θ12, jθ21, j), and the conditions on the minors of the C js mean that Q is pd if and only if θ11, j > 0, θ22, j > 0, and
θ11, jθ22, j > θ12, jθ21, j for all j ∈ {1, . . . , n}.
Corollary 2. If Q in Lemma 1 is symmetric, the quadratic form q>Qq can be evaluated as

∑
j c>j C jc j, where c =

(c>1 · · · c>n )> = Z(Ip ⊗ S>)q = Z(q>1 S · · · q>n S)>.

This result is useful if R1 = R>2 , and u = R2y so that y>Py = u>Rcu, and R1 is fixed.

4. Applications of Lemma 1 to multivariate CARs

Applications of Lemma 1, and Corollaries 1, 2, are considered for some regional models in Section 4.1, and for
some regular rectangular lattice models in Section 4.2. The Rii′ or RS,ii′ in Section 2.5 commute if the Wk commute,
k ≥ 0. If W0 , In and the W−1

0 Wk commute, the result can also be used on

RT = (Ip ⊗W−1
0 )P = −

kmax∑

k=0

Φk ⊗ (W−1
0 Wk)

or similarly, if the W−1/2
0 WkW−1/2

0 commute on

RL = (Ip ⊗W−1/2
0 )P(Ip ⊗W−1/2

0 ) = −
kmax∑

k=0

Φk ⊗ (W−1/2
0 WkW−1/2

0 ).
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In the latter two cases, the submatrices RT,ii′ = −∑kmax
k=0 φk,ii′W−1

0 Wk or RL,ii′ = −∑kmax
k=0 φk,ii′W−1/2

0 WkW−1/2
0 com-

mute. Then the appropriate Wk or W−1
0 Wk or W−1/2

0 WkW−1/2
0 can be upper triangularized, with corresponding eigen-

values νk j, and the C j of Lemma 1 are C j = −∑kmax
k=0 νk jΦk. This always applies if kmax = 1 in Eqs. (4)–(5), as for the

simple regional models; see Section 4.1. Then |P| = |W0|p × |RT| = |W0|p × |RL|.
Note that if, using Lemma 1, the eigenvalues of R are {θii, j}, then the necessary conditions θii, j > 0 for all i ∈

{1, . . . , p} are precisely the necessary and sufficient conditions for the univariate CARs defined by the Rii, and the
conditions θii, jθi′i′, j > θii′, jθi′i, j are the additional ones for the bivariate CARs defined by the Rii′ , i , i′, etc., and
similarly for RS or RT or RL.

4.1. Irregular sites and regions
Some simple models for regional data have kmax = 1 with W1 and the Φ0, Φ1 symmetric. The resulting model

P = −(Mv ⊗Ms)(Φ0 ⊗W0 +Φ1 ⊗W1)(Mv ⊗Ms) can be represented in several ways by taking out H and/or W0 (one
side) or H1/2 and/or W1/2

0 (both sides). Let RR = −(Ψ0 ⊗ In +Ψ1 ⊗ E2), and first consider the symmetric form

P = (E0 ⊗ E1)RR(E>0 ⊗ E>1 ) (6)

for a p× p pd E0 and p× p symmetricΨk with E>0ΨkE0 = MvΦkMv; and for n×n E1 and E2, with E1E>1 = MsW0Ms,
E1E2E>1 = MsW1Ms. Then |P| = |E0|2n × |Ms|2p × |W0|p × |RR|, and, using Corollary 2, y>Py can be obtained as
u>RRu with u = (E>0 ⊗ E>1 )y.

A more general representation is
P = (E3 ⊗ E4)RR(E5 ⊗ E6) (7)

where now the Ψk need not be symmetric, and E3ΨkE5 = MvΦkMv, E4E6 = MsW0Ms, and E4E2E6 = MsW1Ms.
Then |P| = |E3E5|n × |Ms|2p × |W0|p × |RR|.

In both representations, the pd conditions on RR usually give the pd conditions on P, possibly after taking into
account the conditions on H.

Result 1. If the eigenvalues of E2 are ω j, then by Lemma 1, the eigenvalues of RR = −(Ψ0 ⊗ In +Ψ1 ⊗ E2) are those
of the C j = −(Ψ0 + ω jΨ1) = −Ψ0(Ip + ω jΨ

−1
0 Ψ1) with j ∈ {1, . . . , n}, i.e., c j,ii′ = −(ψ0,ii′ + ω jψ1,ii′ ).

4.1.1. The model of Jin et al. [11]
The model of Jin et al. [11] has Pii′ = ηii′ (D − αii′W), i.e., Ms = Inp and P = H ⊗ D − (H ◦ A) ⊗W. When

first suggested it was considered “difficult to check the conditions guaranteeing positive definiteness” [12]. However,
this P was obtained in [11] by taking a linear transform of a model which has H = Ip, but their pd conditions do not
directly apply to A = (αii′ ).

The model of [11] was also derived in [18] using a transformation from independent univariate CARs. These
derivations are useful if the model is to be used as a prior parameter model. However, if the model is being used
directly on continuous regional data, it may be easier and more natural to consider the final model. It is shown here
that using Corollary 1 gives a direct derivation of |P|, and suggests a different, more meaningful, method for checking
that the parameters are allowable. Moreover, Corollary 2 gives a dramatic reduction in computer time when fitting the
model.

Following Eq. (6), P can be expressed as

P = (Ip ⊗ E1){H ⊗ In − (H ◦ A) ⊗ E2}(Ip ⊗ E1),

with RR,ii′ = ηii′ (In − αii′E2), where E1 = D1/2, E2 = D−1/2WD−1/2. The form of E2 implies that ωmax = max(ω j) = 1
and −1 ≤ ωmin < 0, where ωmin = min(ω j). If HA = H−1(H ◦A), then Result 1 can be used with C j = H−ω jH ◦A =

H(Ip − ω jHA) = H ◦ (Jp − ω jA) for all j ∈ {1, . . . , n}, i.e., c j,ii′ = ηii′ (1 − ω jαii′ ).
Another expression for P in the form of Eq. (6), essentially the one used in [11], is

P = (E0 ⊗ E1)(Inp −HA,S ⊗ E2)(E>0 ⊗ E1),

where E0 = H1/2, and HA,S denotes (H1/2)−1(H ◦ A){(H1/2)>}−1.
Using either of these two forms for P allows y>Py, for differing P, to be obtained quicker as u>RRu; see the

comment below Eq. (6).
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4.1.2. Checking that P for the model of [11] is positive-definite
There are several ways to check if P is pd, and to evaluate |P|. The first way uses C j = H(Ip − ω jHA) and the

eigenvalues µ1, . . . , µp of HA. Then the eigenvalues of Ip−ω jHA are 1−ω jµi, so that |P| = |H|n×|D|p×∏
i, j(1−ω jµi).

P is pd if and only if all the C j are pd, which is equivalent to Ip − ω jHA being pd for all j. Thus P is pd if and
only if ω jµi < 1 for all i and j. This implies that 1/ωmin < µi < 1/ωmax for all i, i.e., that min(µi) > 1/ωmin, and
max(µi) < 1/ωmax.

The conditions on the ω js in terms of the µis are less useful, and slightly more complicated as it is possible for
min(µi) to be positive, or max(µi) to be negative; this occurs in Example A in Appendix A.4. Thus they are usually
ωmin > 1/min(µi) and ωmax < 1/max(µi), but if min(µi) > 0 then it is only ωmax < 1/max(µi), and if max(µi) < 0
then it is only ωmin > 1/min(µi). Since these pd conditions involve the eigenvalues of HA, it is not straightforward to
obtain the conditions on the αii′s.

The form RR = Inp −HA,S ⊗ E2 was essentially used in [11]. Then P is pd provided Inp −HA,S ⊗ E2 is pd. Since
the eigenvalues of HA,S are identical to those of HA, the conditions on P and |P| are the same as those above. This
implies that the alternative constraint in Section 3.3 of [11] is in general incorrect.

The method of [18] expresses P as (H1/2⊗E1)(Inp−A∗⊗E2){(H1/2)>⊗E1}, where A∗ is diagonal, and the diagonal
elements are allowable parameters for one-dimensional CARs. It is shown in Appendix A.3 how this assumption fits
into the present framework. This approach is compared with the direct and the approaches of [11] in Example C in
Appendix A.4.

A different way to check P is pd uses Lemma 1 and the C j directly. Then |P| = |D|p × ∏
j |C j|, and P is pd

if and only if all the principal minors of C j are positive for all j ∈ {1, . . . , n}. In particular, it is necessary, for all
i ∈ {1, . . . , p}, that αiiω j < 1, for each ω j, i.e., that 1/ωmin < αii < 1/ωmax (the conditions for the univariate CARs);
that all 2 × 2 minors are positive, i.e., that (1 − αiiω j)(1 − αi′i′ω j) > r2

η(1 − αii′ω j)2 for all i , j, where r2
η denotes

η2
12/(η11η22) with 0 < r2

η < 1 (the conditions for the bivariate CARs); and, if p > 2, that |C j| > 0. An advantage of this
way is that it is easy to see theoretically what the restrictions are on the parameters, and that this can be considered
sequentially for the univariate CARs, the bivariate CARs, the trivariate CARs, etc.

Note that in general, the µi satisfy |H − (H ◦ A) µ−1
i | = 0, together with µiω j < 1, whereas the condition |C j| > 0

is |H − (H ◦ A)ω j| > 0. Thus the end points of the intervals of ω j for which |C j| > 0 are given by the 1/µi.
In particular, if p = 2, then

|C j| = (η11η22){(1 − α11ω j)(1 − α22ω j) − r2
η(1 − α12ω j)2} = |H| − tr(HA)ω j + |(H ◦ A)|ω2

j .

If H is given, then the pd conditions for the αi js are

(1 − α11ω j)(1 − α22ω j) − r2
η(1 − α12ω j)2 > 0 for all ω j, j ∈ {1, . . . , n}.

If also the αii are given and satisfy 1/ωmin < αii < 1/ωmax for i ∈ {1, 2}, the conditions for α12 can be written

{(1 − α11ω j)(1 − α22ω j)/r2
η − 1} + 2ω jα12 − ω2

jα
2
12 > 0 for all ω j, j ∈ {1, . . . , n}.

If the αiiωmax are not too far from 1, the allowable region for α12 may result from using just ω j = ωmax. Other-
wise, additional constraints may arise from ωmin. For the usual regional model with ωmax = 1, it is necessary that
{(1 − α11)(1 − α22) /r2

η −1}+2α12−α2
12 > 0. If 1−α11 and 1−α22 are not ‘large’, this condition may also be sufficient,

as in Example E in Appendix A.4. If ωmin = −1, then it is necessary that {(1 + α11)(1 + α22)/r2
η − 1} − 2α12 − α2

12 > 0.
The theory is demonstrated in Examples B and C in Appendix A.4.

4.1.3. Other simple regional models
Some other simple models with kmax = 1 are considered here. If A is symmetric in the CAMCAR model of [21]

(see Appendix A.2), and if M(s) = Ms ⊗Mv, then P can be expressed in the form of Eq. (6) as

P = (MvH1/2 ⊗Ms)(Inp − A ⊗W)(H1/2Mv ⊗Ms).

Using Result 1, the eigenvalues of RR = Inp − A ⊗W are those of the C j = Ip − ω jA, where ω1, . . . , ωn are the
eigenvalues of W.
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Similarly, if A1 is symmetric in the model of [22] (see Appendix A.2), then P can be expressed in the form of
Eq. (6) as

P = −(H1/2
D ⊗ In)(A0 ⊗ In + A1 ⊗W)(H1/2

D ⊗ In),

with RR = −(A0 ⊗ In + A1 ⊗W) and C j = −(A0 + ω jA1). For both of these simplified models, y>Py can be obtained
as u>RRu − see the comment below Eq. (6).

The model of [10] (see Appendix A.2) expressed in the form of Eq. (7) has

P = −(HD ⊗Ms)(A0 ⊗ In + A1 ⊗W)(Ip ⊗Ms).

This has RR and the C j equal to those for the model of [22] above. An illustration is given in Example F in Ap-
pendix A.4.

The model in uvCAR form with

P = −(HD ⊗ In)(A0 ⊗ D + A1 ⊗W) = −(HDA0 ⊗ D + HDA1 ⊗W)

is equivalent to the model of [11], but more natural to specify and simpler to interpret. This P can be written in the
form of Eq. (6) as

P = −(Ip ⊗ E1)(HDA0 ⊗ In + HDA1 ⊗ E2)(Ip ⊗ E1),

with RR = −(HDA0⊗In +HDA1⊗E2), where E1 and E2 are as in Section 4.1.1. Thus H and H◦A in the model of [11]
are replaced by −HDA0 and HDA1, respectively. The eigenvalues of RR are those of the C j = −(HDA0 + ω jHDA1),
where the ω js are the eigenvalues of E2, and y>Py can be obtained as u>RRu. However, parameter estimation appears
to perform better when the HDAk in RR are replaced by ΦS,k, and the φS,k,ii′s are estimated initially; see Section 2.6.
This method may give a better way to fit the model of [11].

Lemma 1 cannot in general be used for models with asymmetricΦk⊗Wk terms in Eq. (4), or asymmetric Ak⊗Wk

terms in Eq. (5). It also cannot in general be used for the model of [13] (unless D is proportional to In), as the diagonal
blocks Pii are proportional to 2D + In − αiiW, but the off-diagonal blocks Pii′ , i , i′, are proportional to In − αii′W.

4.2. Sites on a regular rectangular lattice

Suppose the sites are on a regular rectangular n1 × n2 lattice (n1 rows and n2 columns), and that they are ordered
lexicographically. The order of a CAR is defined by its neighbor sets. For p = 1, the conditional mean of a first-
order CAR(1) uses horizontal and vertical neighbors (with one or two parameters), a second-order CAR(2) also has
diagonal neighbors (one or two parameters), a third-order CAR(3) includes lag (2,0) and (0,2) neighbors (one or
two parameters), etc. For p > 1, the order is defined here as the maximum neighbor order among and between the
variables.

The usual multivariate CAR models assume T j = T for all j, and M(s) = Inp, and are given by Eq. (4), where
W0 = In, and for k > 0 each Wk is a Kronecker product of a within-column-lag incidence matrix and a within-row-lag
incidence matrix (with the identity matrix I for lag 0), or a sum of such products; see Section 4.2.2. In the mvCAR
form, symmetry of P requires that HAk = Φk is symmetric for all k, i.e.,

∑
r ηirαk,ri′ =

∑
r ηi′rαk,ri for all i , i′, and

all k. The uvCAR form is possibly simpler, as then symmetry of P merely requires that ηiiαk,ii′ = ηi′i′αk,i′i for all i , i′,
and all k.

A multivariate CAR is reversible [15] if the between-variable dependence from Ak at lag (g1, g2) is equal to that
at lag (−g1,−g2) for all lags gm ∈ {0, . . . , nm − 1}, m ∈ {1, 2}, and all pairs of variables i, i′ ∈ {1, . . . , p}. This implies
that the Wk in Eq. (4) are symmetric. Extending the univariate definition, a multivariate CAR with order larger than 1
is a reflection-symmetric CAR (RS-CAR) if it is reversible, and additionally if the between-variable dependence from
Ak at lag (g1, g2) is equal to that at lag (g1,−g2) for all lags gm ∈ {0, . . . , nm − 1}, m ∈ {1, 2}, and all pairs of variables
i, i′ ∈ {1, . . . , p}. This implies symmetry of both components of the Kronecker products involved in any Wk.

Even for univariate CARs on a finite planar lattice, it is only feasible to use exact stationarity, in some restricted
special cases, such as separability of the correlation function, or having a finite unilateral representation. Eq. (1)
specifies the stationary form of P except at border sites, where the conditional mean for the infinite-lattice process
involves sites outside the finite lattice. The correct conditional distributions for border sites, and also the correlations,
usually cannot be simply specified. Thus the stationary P is difficult to obtain accurately. Also, stationarity conditions
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can be very complicated if the CAR is not reflection-symmetric [14]. In practice, a non-stationary form of P is
specified using neighbor assumptions on the Wk, or equivalently assumptions on the conditional distributions of border
sites using observed values at other sites (or 0) as proxies for unobserved ones; see Section 4.2.1. The conditions for
P to be pd may then be slightly more relaxed than the stationarity conditions, but can also be complicated [14].
Stationarity conditions for multivariate CARs are considered in [15].

4.2.1. Boundary assumptions
Several possible boundary assumptions have been proposed for CAR models, each with some advantages and some

disadvantages. The torus assumption (TBA) essentially wraps the lattice so that the first and last rows are adjacent,
and similarly with the columns. The fixed-value assumption (FBA) (often called the Dirichlet boundary condition)
sets the values outside the lattice to 0 (the mean), i.e., the corresponding terms are removed from the conditional mean.
Balram and Moura [1] discuss two assumptions using reflections about the boundaries: the reflective (or variational or
asymmetric Neumann) assumption RBA, and the symmetric Neumann condition (SBA). Besag and Kooperberg [3]
present two other possibilities for a one-parameter CAR(1). A negative-reflection (NBA) possibility is presented in
[19]. These boundary assumptions are discussed further and compared in Appendix A.5.

4.2.2. Using common eigenvectors for the Wk

Under certain boundary and model assumptions, the same eigenvectors can be used for all the Wk. Recall that
the eigenvalues of a Kronecker product are all the products of the eigenvalues of the constituent matrices. For g2 ∈
{0, . . . , n2 − 1}, and a particular boundary assumption, let Un2,g2 be the boundary-corrected within-row right-adjacency
matrix for lag g2, i.e., the ( j2, j′2) element of Un2,g2 is 1 if, in a lattice row, j′2 is a right neighbor of j2. The standard
planar neighbors have only j′2 = j2 + g2 if j2 + g2 ≤ n2, which corresponds to the FBA, with Un2,0 = In2 . Other
boundary assumptions include other neighbors. The lag g2 within-row left-adjacency matrix is the half-turn rotation
of Un2,g2 , i.e., Zn2 Un2,g2 Zn2 where the nm × nm reflection matrix Znm has ones on the NE-SW diagonal. Similarly, let
Un1,g1 be the within-column down-adjacency matrix for lag g1 ∈ {0, . . . , n1 − 1}, with Un1,0 = In1 , and Zn1 Un1,g1 Zn1

the up-column adjacency matrix. For most boundary assumptions, but not for the RBA, Znm Unm,gm Znm = U>nm,gm
.

Then, for g2 > 0, Nn2,g2 = Un2,g2 + Zn2 Un2,g2 Zn2 is the lag g2 row-neighbor adjacency matrix, and, for g1 > 0,
Nn1,g1 = Un1,g1 + Zn1 Un1,g1 Zn1 is the lag g1 column-neighbor adjacency matrix. Let Nnm,0 = Inm for m ∈ {1, 2}.

For the TBA, Unm,gm includes ones in the (nm − gm + jm, jm) positions, jm ∈ {1, . . . , gm}, and the Unm,gm are cir-
culant matrices, with Znm Unm,gm Znm = U>nm,gm

= U−1
nm,gm

, and Unm,gm = (Unm,1)gm . Since the Unm,gm can use the same
eigenvectors, with corresponding eigenvalues exp(2πigm jm/nm) for jm ∈ {0, . . . , nm − 1} (where here i =

√−1), the
CAR can be completely general with the Wk using any of Un1,g1 ⊗Un2,g2 , Un1,g1 ⊗U>n2,g2

, U>n1,g1
⊗Un2,g2 , U>n1,g1

⊗U>n2,g2
.

For any reversible CAR, the asymmetric Wk occur in pairs giving terms Un1,g1 ⊗ Un2,g2 + U>n1,g1
⊗ U>n2,g2

, or Un1,g1 ⊗
U>n2,g2

+ U>n1,g1
⊗ Un2,g2 with gm ∈ {1, . . . , nm}. The corresponding eigenvalues are then 2cos

{
2π(g1 j1/n1 + g2 j2/n2)

}

or 2cos
{
2π(g1 j1/n1 − g2 j2/n2)

}
, respectively, for jm ∈ {0, . . . , nm − 1}. This corresponds to using the discrete Fourier

transform (DFT).
Common eigenvectors can be used under many other boundary assumptions for first-order neighbors if the row

neighbor adjacency matrix is W1 = In1 ⊗ Nn2,1, and the column one is W2 = Nn1,1 ⊗ In2 . This does not apply to the
‘average’ and initial ‘new strategy’ of [3]. If second-order RS-neighbors are included, and the adjacency matrix is
taken as W3 = W1 ⊗W2 = Nn1,1 ⊗Nn2,1, then all three Wk matrices commute and can use the same eigenvectors. For
the FBA, the eigenvalues of Nnm,1 are 2cos {π ( jm + 1) / (nm + 1)} for jm ∈ {0, . . . , nm − 1} with m ∈ {1, 2}. Another
disadvantage of the SBA (see Appendix A.5) is that there is in general no closed formula for the eigenvalues; see
Lemma 3 of [1].

Under the RBA, Unm,gm , gm > 0, includes 1 in the (nm + 1 − jm, nm + jm − gm) positions, with jm ∈ {1, . . . , gm}. For
the NBA, Unm,gm , gm > 1, includes −1 in the (nm + 1 − jm, nm + 1 + jm − gm) positions, for jm ∈ {1, . . . , gm − 1}. In
both cases, the Wk are of the form Nn1,g1 ⊗ Nn2,g2 , and can use the same eigenvectors. For the RBA, the eigenvalues
of Nnm,gm are 2cos(πgm jm/nm), for jm ∈ {0, . . . , nm − 1} and m ∈ {1, 2}, which corresponds to using the discrete cosine
transform (DCT); see [4, 5, 19]. For the NBA, the eigenvalues of Nnm,gm are 2cos

{
πgm jm/(nm +1)

}
, jm ∈ {0, . . . , nm−1},

m ∈ {1, 2}, which corresponds to using the discrete sine transform (DST); see [19].
With any CAR and boundary assumptions which result in common eigenvectors for the Wk, Lemma 1 can be used

to find the conditions for P to be pd, theoretically for a model with few parameters, or computationally with more
complicated models. This is illustrated in Example 1 below.

10



Example 1. Consider a RS-CAR(2). Then,

Pii′ = −φ0,ii′In − φ1,ii′In1 ⊗ Nn2,1 − φ2,ii′Nn1,1 ⊗ In2 − φ3,ii′Nn1,1 ⊗ Nn2,1.

If the eigenvalues of Nnm,1 are λm, jm for all jm ∈ {1, . . . , nm}, then, using Lemma 1, the (i, i′) element of C j1, j2 , for
jm ∈ {1, . . . , nm}, is −φ0,ii′ − φ1,ii′λ2, j2 − φ2,ii′λ1, j1 − φ3,ii′λ1, j1λ2, j2 . Then the eigenvalues of P are those of the C j1, j2 , P is
pd provided that all C j1, j2 are pd, and |P| = ∏ |C j1, j2 |. �

Computer timing evaluations using Matlab [24] suggest that using the result |P| = ∏
j |C j| substantially reduces

the time to evaluate |P|. For example, when p = 2 and n1 = n2 = 20, and calculating the eigenvalues of the Wk, the
reduction factor is around 300 for |P|, around 200 for the product of the diagonal elements of the Cholesky, around 900
for the product of the calculated eigenvalues of P, and around 200, 400, 1200, respectively, using the 2× 2 partitioned
matrices. Similar reductions occur for p = 3 and n1 = n2 = 16. Since these n1 and n2 are small, there is only a small
extra reduction factor of around 1.2 when the known eigenvalues of the Wk are used. The number of operations is of
the same order for each of the DFT, DCT and DST, but the RBA and NBA do not appear to have been widely used for
fitting higher-order RS-CARs.

5. Applications to real data

In this section a brief discussion of two applications is given. Both data sets are large and exhibit complicated
behavior, requiring very detailed analyses. The aim here is to obtain some preliminary insight by fitting multivariate
CARs.

5.1. Per capita income and unemployment rates in Italy

The first data set has regional data from 2011 for 8078 municipalities in Italy, and uses per capita in-
come (PCI) in euros, from the Italian Ministry of Finances (http://www1.finanze.gov.it/finanze2/pagina_
dichiarazioni/dichiarazioni.php), and unemployment rate (UR) from the 2011 census, from the Italian Insti-
tute of Statistics (ISTAT) (http://ottomilacensus.istat.it/download-dati/). The PCI ranges from 11,998
to 53,589, with mean 20,416 and sd 3044, while UR ranges from 0 to 42.2, with mean 10.13 and sd 6.3. These are
both macroeconomic factors that can be used to gauge the state of an economy. An increase in demand leads to an
increase in gross domestic product (GDP), which must be accompanied by a corresponding increase in productivity,
and a consequent decrease in unemployment levels. The inverse relationship between UR and GDP is commonly re-
ferred to as Okun’s law, and the bivariate CAR allows this to be studied conditionally given the values at neighboring
locations. At municipality area level in Italy, only the PCI is available, which is used here as a proxy for GDP. The
data are represented in Figure 1. The correlation between PCI and UR is −0.441. Between neighboring regions, both
variables are correlated — Moran’s coefficient being 0.763 (PCI) and 0.638 (UR), with the negative −0.404 between
PCI and UR.

Both variables are positively skewed, and were log-transformed (after adding 0.5 to UR). Both variables also have a
strong trend from North-West to South-East, and a planar trend (using the centroids of each region) was then removed.
The detrended ln(PCI) ranges from 9.39 to 10.89, with mean 9.91 and sd 0.145, while the detrended ln(UR + 0.5)
ranges from −0.69 to 3.75, with mean 2.20 and sd 0.591. The four relevant correlations only slightly differ from those
for the original data.

For the CAR modeling of the detrended log variables, constant means are assumed, and the usual neighborhood
adjacency matrix W, with the associated D (see Section 2.4), are used. The number of neighbors ranges from 1 to 29,
with median 6.

The full 6-parameter model P = −(HDA0 ⊗ D + HDA1 ⊗W) described in Section 4.1.3 was fitted. The resulting
estimates (estimated standard errors) are: τ̂11 = 0.0425 (0.0007), τ̂22 = 0.502 (0.0082), α̂0,12 = −0.0037 (0.0033),
α̂1,11 = 0.987 (0.0031), α̂1,12 = 0.0052 (0.0036), α̂1,22 = 0.958 (0.0064).

Using Corollary 2 to obtain y>Py as u>RRu with u = (Ip⊗D1/2)y reduced the computer time by a factor of around
250, and fitting using HDAk = ΦS,k for k ∈ {0, 1} (see Section 4.1.3) performed better than directly estimating HD and
the Aks.
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Figure 1: Maps showing the per capita income (PCI) and unemployment rate (UR) in Italy in 2011.

Although the original sample statistics show reasonable negative correlations between the variables within regions
and between neighboring regions, both between-variable estimates α̂0,12 and α̂1,12 are relatively small, and the fit
with α0,12 = α1,12 = 0 is not significantly different (and the remaining estimates are essentially unchanged). This fit
suggests that Okun’s law may not hold when conditioning on neighboring regions.

5.2. NO2 and O3 concentrations in Northern Italy

The second data set uses modeled average daily measurements of nitrogen dioxide (NO2) and ozone (O3) for July
7, 2016 on an 82×128 regular grid (n = 10,496), with a spatial resolution of 5×5 km2. The area covers Northern Italy,
and includes some parts of France, Switzerland and Slovenia, plus some of the adjacent Ligurian and Adriatic seas,
ranging approximately from Grenoble in the West to Trieste in the East, and from Arezzo in the South to Lausanne in
the North. One of the main problems caused by air pollution in urban areas is photochemical oxidants. Among these,
NO2 and O3 are particularly important because they can affect human health. The data came from the NINFA2015
(Northern Italy Network to Forecast Photochemical and Aerosol pollution) model [23].

The NO2 values (in µg/m3) range from 0.144 to 78.063 with mean 5.37, and the O3 values (in µg/m3) range from
86.04 to 213.07, with mean 143.75. Their within-location correlation is 0.400. Both variables are positively skewed,
and were log-transformed. The transformed variables are shown in Figure 2, which suggests strong complicated trends
in the variables.

To remove the large scale spatial trends, the log data were corrected by first-order spatial differencing with equal
weights. The detrended ln(NO2) ranges from −0.950 to 1.836, with sd 0.211, while the detrended ln(O3) ranges from
−0.287 to 2.634, with sd 0.247. Their neighbor correlations are 0.200 (N-S) and 0.214 (E-W), and 0.703 (N-S) and
0.794 (E-W), respectively. Their within-site correlation is now 0.349.

An 18-parameter RS-CAR(3) with the RBA was fitted. Although some of the estimated parameters appear small,
no model simplification was possible, e.g., the GLRT statistic for reducing to the RS-CAR(2) is 224 on 6 degrees of
freedom. Using Corollary 1 reduced the computer time for fitting by a factor of around 1700 compared with the best
alternative. Fitting higher-order models with many more parameters takes significantly longer, and has convergence
problems.

The RS-CAR(3) with the TBA has a much higher deviance than the RBA fit. Similarly, the second order RS-CAR
fits with the FBA and TBA have much higher deviances than the RBA fit.
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Figure 2: Maps of the log-transformed NO2 and O3 on 7th July 2016.

Table 1: Estimated conditional correlations between the detrended ln(NO2) and ln(O3) for pairs of pixels at lags (0,0),
(0,1), (1,0), (1,1), (0,2), and (2,0), where lag (g1, g2) is a vertical (N-S) lag of g1 and a horizontal (E-W) lag of g2.

(0,0) (0,1) (0,2)

NO2 O3 NO2 O3 NO2 O3

(0,0)
NO2 1 0.197 0.144 0.139 −0.130 −0.036

O3 0.197 1 0.139 0.546 −0.036 −0.087

(1,0)
NO2 −0.003 −0.020 0.006 0.014

O3 −0.020 −0.060 0.014 0.048

(2,0)
NO2 −0.006 0.004

O3 0.004 −0.003

The estimated conditional correlations from the third order RS-CAR with the RBA are shown in Table 1. There
is a positive conditional correlation between the detrended ln(NO2) and ln(O3) within a location, and at lag (0,1) —
the horizontal (E-W) neighbor. Also, there is some univariate conditional correlation at lag (0,1), quite strong for O3,
plus smaller negative ones at lag (0,2). Other conditional correlations are small.

Note that in general, chemical reactions between air pollutants are very complex, and the relationships between
them may differ from one location to another. The region considered here covers a very large area, containing many
factors that may influence relationships, e.g., sea and mountains.

6. Discussion

Connections between different definitions of multivariate CARs and different data orderings have been given
in general. A simplified additive model encompasses many of the models commonly proposed. If this model has
symmetric components, then a natural check can be made on the permissible region of the parameters in simple
regional models, including other forms for W, and in some common cases on regular rectangular lattices. Gaussian
maximum likelihood is feasible on much larger data sets than was possible previously.
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Usage for the rectangular lattice may appear to be limited as Lemma 1 only fully applies to general CARs with the
TBA. However, any RS-CAR can be fitted under the RBA or NBA, and some other boundary assumptions can be used
for RS-CARs up to second-order dependence. Low-order CAR models are frequently used as priors in hierarchical
modeling, and can often capture the main features of a real data set. With large lattices and higher-order models,
it is common to use the TBA, either in itself, or as a first approximation to fitting a planar model. If n1 and n2 are
large, the estimates obtained using the TBA may be very close to those using a different, more reasonable, boundary
assumption, which could then be used with those estimates for prediction, etc. Inadequacies detected in a fitted model
can then suggest other, harder to fit, models. Similarly, for smaller lattices, fitting an RS-CAR with the RBA or NBA
may provide useful insight into more appropriate models.

These results can be extended to other regular lattices, including higher-dimensional rectangular lattices. The
results have been presented in terms of CAR (GMRF) models, but Lemma 1 can still be used if there is additive inde-
pendent noise (or measurement error) — an errors-in-variables CAR [2], and for the more general Rational Spectral
Density models [9] provided the Direct Covariance component uses the same boundary and symmetry assumptions as
the CAR component.

Simple extensions would allow the matrix M in Section 2.3 to be non-diagonal, and possibly also dependent on
parameters.

If the data have measurement error, so that the (noisy) observed data are z = y + ε, and ε is independent of the
original data y (the signal) with var(ε) = σ2Inp, var(y) = P−1, and interest is in y, then y is predicted by ŷ = E(y|z) =

(Inp +σ2P)−1z, with mean-square error E{(y− ŷ)(y− ŷ)>} = σ2(Inp +σ2P)−1. Fitting can be carried out directly on the
noisy data z as an errors-in-variables CAR to then obtain ŷ. Alternatively, an iteration could use given estimates of σ2

and the CAR parameters to estimate ŷ, and then refit the CAR to the estimated ŷ to get updated parameter estimates.
If there are missing values, or outlying values that are removed, the methods in [16] can be used to obtain the

maximum likelihood estimates, and if required, estimates of these values. Further work is in progress on Gaussian
maximum likelihood fitting of general multivariate CARs on a regular rectangular lattice, and investigating the use of
the Kalman filter on a unilateral representation of the CAR as another method for fitting data with measurement error.

Appendix

A.1. Examples for Section 2

Example A Suppose p = 2, with n sites on a line, and that conditional variances and covariances do not depend on the
site, so that T j = T = (τii′ ) and H j = H = (ηii′ ) for all j. Also, for j an interior site, 1 < j < n (boundary assumptions
are discussed in Section 4.2.1), suppose dependences are only on adjacent (first-order) neighbors. Then, the mvCAR
and uvCAR forms can both be written, viz.

E(y1, j|y−∗) = α0,12y2, j + α1,11y1, j−1 + α2,11y1, j+1 + α1,12y2, j−1 + α2,12y2, j+1, var(y1, j|y−∗) = τ11, and
E(y2, j|y−∗) = α0,21y1, j + α1,22y2, j−1 + α2,22y2, j+1 + α1,21y1, j−1 + α2,21y1, j+1, var(y2, j|y−∗) = τ22,

with cov(y1, j, y2, j|y−∗) = τ12. The mvCAR form has * equal to j, and α0,12 = α0,21 = 0. The uvCAR form has * equal
to (i, j) for (yi, j|y−∗), with τ12 = 0.

For simplicity, assume now that the cross-dependences are equal, so that α1,ii′ = α2,ii′ for all i, i′. Symmetry of
P(s) requires that η12α1,11 + η22α1,21 = η11α1,12 + η12α1,22 for the mvCAR form; and that η11α0,12 = η22α0,21 and
η11α1,12 = η22α1,21 for the uvCAR form. In both cases there are 6 ‘free’ parameters (subject to pd conditions).

Given the mvCAR form, the uvCAR form is

E(y1, j|y−(i, j)) = {−η12y2, j + (η11α1,11 + η12α1,21)(y1, j−1 + y1, j+1) + (η11α1,12 + η12α1,22)(y2, j−1 + y2, j+1)}/η11,

var(y1, j|y−(i, j)) = 1/η11;

and similarly for y2, j. Note the within-site cross-dependence term −(η12/η11)y2, j. Given the uvCAR form, the mvCAR
form is E(y j|y− j) = −A−1

0 A1(y j−1 + y j+1) and var(y j|y− j) = −A−1
0 × diag(τ11, τ22), where

A0 =

[ −1 α0,12
α0,21 −1

]
and A1 =

[
α1,11 α1,12
α1,21 α1,22

]
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with η11α0,12 = η22α0,21 and η11α1,12 = η22α1,21 (and α0,12α0,21 < 1). Note that the off-diagonal elements of var(y j|y− j)
involve α0,12, with those of {var(y j|y− j)}−1 being −η11α0,12. �

Example B. Assuming y0 = yn+1 = 0 (see the FBA in Section 4.2.1), the original model in Example A results if
M(s) = Inp, and in Eq. (2), kmax = 2, W0 = In, with W2 = Un,1, the adjacent (lag 1) right neighbor incidence matrix
having 1 in the ( j, j+1) position for j ∈ {1, . . . , n−1}, and W1 = W>

2 , the incidence matrix for adjacent left neighbors.
The mvCAR form has A0 = −I2 (i.e., α0,12 = α0,21 = 0), and a general H. The uvCAR form has T and H diagonal,
H = HD (i.e., τ12 = η12 = 0). Symmetry of P(s) requires that A2 = H−1A>1 H. If, as in most of Example A, α1,ii′ = α2,ii′

for all i, i′, then kmax = 1, with W1 = Un,1 + U>n,1 = Nn,1, the neighbor adjacency matrix, and symmetry of P(s) requires
that Φk = HAk is symmetric for k ∈ {0, 1}. �

A.2. Previously proposed regional models

The models of [8, 21] and the simplified one of [22] have kmax = 2 in Eqs. (2)–(3), and use W1 = WU and
W2 = W>

U with A1 asymmetric, and A2 = H−1A>1 H for Eq. (2) or A2 = A>1 for Eq. (3).
That of [8] has the form of Eq. (2) with A1 = H−1(H ◦ A), for some A = (αii′ ), so that

P(s) = D ⊗H −WU ⊗ (H ◦ A) −W>
U ⊗ (H ◦ A>)

= (In ⊗H){D ⊗ Ip −WU ⊗H−1(H ◦ A) −W>
U ⊗H−1(H ◦ A>)}.

This generalizes the model of [11] for which A is symmetric, so that the model of [11] has kmax = 1, with P(s) =

D ⊗ H −W ⊗ (H ◦ A); which itself generalizes the separable (or factorized) model with P(s) = (D − αW) ⊗ H, i.e.,
A = αJp.

The models of [21] use M(s), with W0 = In, and have the form of Eq. (3). Their (mvCAR form) CAMCAR model
has

RS,(s) = (In ⊗H1/2)(Inp −WU ⊗ A1 −W>
U ⊗ A>1 ){In ⊗ (H1/2)>} =

= In ⊗H −WU ⊗ {H1/2A1(H1/2)>} −W>
U ⊗ {H1/2A>1 (H1/2)>}.

Their (uvCAR form) extended CAMCAR model is very similar, but uses HD and a symmetric A0 instead of H. It has

−RS,(s) = (In ⊗H1/2
D )(In ⊗ A0 + WU ⊗ A1 + W>

U ⊗ A>1 )t(In ⊗H1/2
D )

= In ⊗ (H1/2
D A0H1/2

D ) + WU ⊗ (H1/2
D A1H1/2

D ) + W>
U ⊗ (H1/2

D A>1 H1/2
D ).

The simplified model of [22] is the extended CAMCAR model with M(s) = Inp, i.e., P(s) = RS,(s).
The model of [10] has M(s) = Ms ⊗ Ip, and R(s) = −(In ⊗ HD)(In ⊗ A0 + W ⊗ A1), with HDAk symmetric for

k ∈ {0, 1}. This is essentially the same as the extended CAMCAR model with A1 symmetric and M(s) = Ms ⊗ Ip, or
the simplified model of [22] with A1 symmetric and Ms = In.

Two other models can be written using Eqs. (2)–(3), with M(s) = Inp. The Twofold CAR model of [13] uses In as
well as D and W, and has

P(s) = 2D ⊗HD − In ⊗ (H1/2
D A0H1/2

D ) −W ⊗ (H1/2
D A1H1/2

D ) =

= (In ⊗H1/2
D )(2D ⊗ Ip − In ⊗ A0 −W ⊗ A1)(In ⊗H1/2

D ).

This P(s) adds 2D ⊗HD to the symmetric [22] model, giving extra terms on the diagonal.
The model of [12] for p = 2 specifies y1 and y2|y1 as univariate CARs, and so the likelihood, etc., can be obtained

from two univariate CARs. However, y1 and y2 are treated asymmetrically, and the joint distribution is not simple.
For example, in the simplest case y1 and y2|y1 are first-order CARs (i.e., just involving adjacent neighbors), with
y2|y1 having first-order dependence in y1. Then from the inverse of their Eq. (13), in the bivariate model y1 has first-
order dependence, the cross-dependence is second-order involving neighbors of neighbors, and y2 has third-order
dependence. Hence Eq. (2) has kmax = 3, with W2 = W2 having non-zero elements on the diagonal, and W3 = W3

having non-zero elements overlapping with those of W (i.e., W ◦W3 , 0).
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A.3. The method of Martinez-Beneito [18]
For E1, E2 as in Section 4.1, let P be (H1/2 ⊗ E1)(Inp − A∗ ⊗ E2){(H1/2)> ⊗ E1}, where A∗ is diagonal, and the

diagonal elements are allowable parameters for one-dimensional CARs, i.e., are between 1/ωmin and 1/ωmax for all i.
Then using H ◦ A = H1/2A∗(H1/2)>, gives A = {H1/2A∗(H1/2)>}\ ◦H, where \◦ denotes element-wise division. Any
H1/2 can be used, and the resulting P will be pd.

However, since A∗ = HA,S is diagonal, it follows that A∗ contains the eigenvalues of HA,S, and hence those of
HA, so that A∗ = diag(µ1, . . . , µp). Thus, the results for |P| and checking P is pd are exactly those given initially in
Section 4.1.2. If required, the appropriate H1/2 for transforming back from H ◦A to A∗ can be found by obtaining the
standardized matrix X of eigenvectors of HA,S for any H1/2, and then H1/2X satisfies (H1/2X)−1(H◦A){(H1/2X)>}−1 =

A∗. For a given ordering of the µis in A∗, H1/2 is usually unique, assuming its (1,1)-element is positive.
In particular, if p = 2, then µ1 and µ2 are the roots of x2 − tr(HA)x + |HA| = 0, and

∏
i, j(1 − µiω j) =

∏
j
[
1 −

tr(HA)ω j +
{|HA|}ω2

j
]
. Note that if |H ◦ A| > 0, as commonly occurs, then the µi have the same sign.

If it wished to obtain it directly, the squares of the first row elements of the H1/2 for the method of [18] are
η11

[
1 ± {

2α11 − tr(HA)
}
/
√{

tr(HA)2 − 4|HA|}]/2; given one element of H1/2, the remaining three are determined by
H1/2(H1/2)> = H.

A.4. Examples for Section 4.1

Example C. If p = 2,

H =

[
2 1
1 3

]
and A =

[
0.2 0.3
0.3 0.1

]
,

then

HA =

[
0.18 0.12
0.04 0.06

]
.

The eigenvalues of HA satisfy µ2 − 0.24µ + 0.006 = 0, so that µ2 = 0.12 + (0.0084)1/2 ≈ 0.2117, with µ1 ≈ 0.0283,
i.e., min(µi) > 0. Then ∏

i, j

(1 − µiω j) =
∏

j

(1 − 0.24ω j + 0.006ω2
j ).

If ωmax = 1, µ2 < 1 shows that the parameters are acceptable. Using an upper triangular Ts, the method of [11] has

HA =

[
0.2

√
0.002√

0.002 0.04

]
,

with the same eigenvalues. The method of [18] has A∗ = diag(µ1, µ2) with

H1/2 ≈
[

0.357 1.368
−1.352 1.082

]
,

where the elements of the first row are the square roots of 1 ± 4/
√

21 ≈ 0.127 and 1.873. If however α11 = 0.9 and
α22 = 0.8, the eigenvalues of HA satisfy µ2 − 1.92µ + 0.846 = 0, so that µ2 = 0.96 + (0.0756)1/2 ≈ 1.235. Thus, if
ωmax = 1, µ2ωmax > 1, and the parameters are not acceptable. �

Example D. With H and A as in Example C, the pd conditions on α12 when ωmax = 1 and ωmin = −1 become
3.32 + 2α12 − α2

12 > 0, and 6.92 − 2α12 − α2
12 > 0, leading to (respectively) α12 > −1.078 and α12 < 1.814. If

ωmin = −1/2, then the second condition becomes 23.72−4α12−α2
12 > 0, and both lead to (from the first) α12 < 3.078.

If α11 = 0.9 and α22 = 0.8, the condition on α12 when ωmax = 1 becomes −0.88 + 2α12 − α2
12 > 0, leading to

0.654 < α12 < 1.346. This condition is the only one even if ωmin = −1. �

Example E. If H and A are as in Example C, then

C j =

[
2(1 − 0.2ω j) 1 − 0.3ω j

1 − 0.3ω j 3(1 − 0.1ω j)

]
,
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and the eigenvalues of the C j are the roots of x2−(5−0.7ω j)x+(5−1.2ω j +0.03ω2
j ) = 0, i.e., {(5−0.7ω j)±(5−2.2ω j +

0.37ω2
j )

1/2}/2. These roots are positive provided ω j < 5 (from c j,11 and c j,22), and ω j < r1 = 10{2 − (7/3)1/2} ≈ 4.72
(from |C j|). Thus the only pd condition is ω j < r1, i.e., ωmax < r1. �

Example F. Eq. (10) of [10] has Pii = ηii
(
In − α1,iiW

)
for i ∈ {1, 2}, and P12 = −η11

(
α0,12In + α1,12W

)
. Then, apart

from the ηii > 0, and the standard conditions on the α1,ii for P to be pd, it is also necessary that η22(1 − α1,11ω j)(1 −
α1,22ω j) > η11(α0,12 + α1,12ω j)2 for all ω j. The same condition results from C j = −(A0 + ω jA1) after using the
symmetry of HA. For the model of [22] with A1 symmetric, using C j = −(A0 + ω jA1) the extra necessary condition
for P to be pd is (1 − α1,11ω j)(1 − α1,22ω j) > (α0,12 + α1,12ω j)2 for all ω j. It does not involve the parameters of H. �

A.5. Boundary conditions for CARs on a regular rectangular lattice
The torus TBA is often used. It gives a stationary process, but the resulting correlations depend on n1 and n2. It

implies, for example, that site 1 is the right neighbor of site n2, and immediately below site n2(n1 − 1) + 1. Thus the
correlations are completely unrealistic for sites that are very distant, e.g., at lags (g1, g2) with nm − gm small for m = 1
or 2.

The fixed FBA seems reasonable, and has frequently been used. But at border sites it results in low variances
under positive correlations.

The reflection RBA reflects horizontal lags outside the lattice about 1/2 or n2 + 1/2, and similarly for vertical lags.
Thus, on a line site j − g, g > j − 1, is replaced by site g − j + 1, and site j + g, g > n − j, is replaced by site
2n + 1 − ( j + g). This implies that border sites (1 or n) are first neighbors of themselves, sites 2 and n − 1 are third
neighbors of themselves, etc. Even for a CAR(1), the diagonal elements of P alter the conditional variance, and scale
the coefficients for the conditional mean.

The symmetric Neumann SBA reflects horizontal lags outside the lattice about 1 or n2 + 2, so that site 2 on a line
is a left first-neighbor of site 1. Symmetry of P then strangely requires that on a line site 1 is twice a left first-neighbor
of site 2. It leads to a large variation in the variances and covariances, and would rarely be useful.

Example G. Consider a univariate RS-CAR(2). The infinite-lattice stationary model has

E(y j1, j2 |y−( j1, j2)) = φ1,0(y j1−1, j2 + y j1+1, j2 ) + φ0,1(y j1, j2−1 + y j1, j2+1) + φ1,1(y j1−1, j2−1 + y j1−1, j2+1 + y j1+1, j2−1 + y j1+1, j2+1),

and var(y j1, j2 |y−( j1, j2)) = τ. For a finite lattice, using Eq. (1), this specifies all elements of P except for those corre-
sponding to both sites on the border, i.e., each site has jm = 1 or nm, m = 1 or 2. The TBA has E(y1,1|y−(1,1)) = φ1,0(y2,1+

yn1,1) + φ0,1(y1,2 + y1,n2 ) + φ1,1(y2,2 + y2,n2 + yn1,2 + yn1,n2 ), etc. The FBA has E(y1,1|y−(1,1)) = φ1,0y2,1 + φ0,1y1,2 + φ1,1y2,2,
E(y1,2|y−(1,2)) = φ1,0y2,2 + φ0,1(y1,1 + y1,3) + φ1,1(y2,1 + y2,3), etc. The RBA alters the diagonal elements of P for
j1 = 1 or n1, or j2 = 1 or n2, and the neighbor dependence, so that var(y1,1|y−(1,1)) = τ/(1 − φ1,0 − φ0,1 − φ1,1), and
var(y1,2|y−(1,2)) = τ/(1 − φ1,0), with (1 − φ1,0 − φ0,1 − φ1,1) E(y1,1|y−(1,1)) = (φ1,0 + φ1,1)y2,1 + (φ0,1 + φ1,1)y1,2 + φ1,1y2,2,
(1 − φ1,0) E(y1,2|y−(1,2)) = φ1,0y2,2 + (φ0,1 + φ1,1)(y1,1 + y1,3) + φ1,1(y2,1 + y2,3), etc. �

The NBA reflects horizontal lags outside the lattice about 0 or n2 + 1, plus changing the sign, and similarly for
vertical lags. Thus, on a line site j − g, g > j − 1, is replaced by site g − j, and site j + g, g > n − j, is replaced by
site 2(n + 1) − ( j + g), with the parameter multiplied by the sign of j − g or n + 1 − ( j + g), respectively (0 if g = j or
n + 1 − j). This implies that border sites are negative second-neighbors of themselves (e.g., site (1,1) is a horizontal
and vertical second-neighbor of itself), altering the conditional means and variances for border sites for CARs with
a higher order than‘2, i.e., including lag (2, 0) neighbors, etc. For positive dependence parameters, this reduces the
conditional variance at border sites. For CARs up to order 2, the NBA is the same as the FBA.

Example H. Consider a univariate RS-CAR(3), and the NBA. Then var(y1,1|y−(1,1)) = τ/(1 + φ2,0 + φ0,2), and (1 +

φ2,0 + φ0,2)E(y1,1|y−(1,1)) = φ1,0y2,1 + φ0,1y1,2 + φ1,1y2,2 + φ2,0y3,1 + φ0,2y1,3, var(y1,2|y−(1,2)) = τ/(1 + φ2,0), and (1 +

φ2,0)E(y1,2|y−(1,2)) = φ1,0y2,2 + φ0,1(y1,1 + y1,3) + φ1,1(y2,1 + y2,3) + φ2,0y3,2 + φ0,2y1,4, etc. �

A theoretical possibility for getting P close to the planar stationarity version is to embed the n1 × n2 planar lattice
in a larger torus lattice. If the torus lattice is sufficiently large, a subset of the variance matrix corresponding to an
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n1 × n2 lattice will give a good approximation to P−1. This can then be inverted to get P. Fast routines are available
for inverting a specified correlation matrix, e.g., [7, 25]. However, the torus lattice may need to be very large to obtain
a good approximation to P−1 for a stationary process unless the parameters are well within the acceptable region.

One of the suggestions in [3] uses Dempster’s algorithm to improve P, which requires knowledge of the neighbor
correlation. It is not clear how to extend either of their two assumptions to other CARs.

Example I. Consider Example 2.2 of [3]. This concerns a stationary univariate 1-parameter CAR(1) on a 10 × 10
lattice, with variance 1 and neighbor correlation 0.75, and some approximate P matrices. They do not compare the
RBA, or the SBA. They choose λ = 4φ1,0 so that the central neighbor correlation (between sites (5,5) and (5,6), etc.)
is 0.75 (for the TBA, this is also the correlation between sites (1,1) and (1,10), etc.).

For comparison with their results, the RBA (λ ≈ 0.995763) has variances varying from 1 to 1.786 (corner sites),
neighbor covariances varying from 0.75 to 1.300 (sites (1,1) and (1,2), etc.), and neighboring correlations varying from
0.75 to 0.8033. These are slightly better than their average “rescaling” assumption, and much better than the FBA
(0.31 to 1, 0.12 to 0.75, 0.35 to 0.75, respectively). Their own “new strategy”, before using Dempster’s algorithm,
has 0.9949 to 1.1039, 0.75 to 0.8743, and 0.75 to 0.8160, respectively. The SBA compares very badly, giving (λ ≈
0.86205347) 1 to 99.04, 0.75 to 85.27, and 0.75 to 0.9974, respectively.

If the 10×10 planar lattice is embedded in a torus lattice, it needs the torus lattice to be around 700×700 to get
reasonably close (absolute differences < 10−4) to the stationary planar correlations for lags (g1, g2), gm ∈ {0, . . . , 9};
m ∈ {1, 2}. �
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