期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:173
Wild bootstrap bandwidth selection of recursive nonparametric relative regression for independent functional data
Article
Slaoui, Yousri1 
[1] Univ Poitiers, Poitiers, France
关键词: Asymptotic normality;    Bootstrap;    Functional data analysis;    Functional nonparametric statistics;    Mean square relative error;    Nonparametric estimation;    Stochastic approximation algorithm;   
DOI  :  10.1016/j.jmva.2019.04.009
来源: Elsevier
PDF
【 摘 要 】

We propose and investigate a new kernel regression estimator based on the minimization of the mean squared relative error. We study the properties of the proposed recursive estimator and compare it with the recursive estimator based on the minimization of the mean squared error proposed by Slaoui (2018). It turns out that, with an adequate choice of the parameters, the proposed estimator performs better than the recursive estimator based on the minimization of the mean squared error. We illustrate these theoretical results through a real chemometric dataset. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2019_04_009.pdf 1077KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次