期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:170
Inference for sparse and dense functional data with covariate adjustments
Article
Liebl, Dominik1 
[1] Univ Bonn, Stat Abt, Adenauerallee 24-26, D-53113 Bonn, Germany
关键词: Functional data analysis;    Local linear kernel estimation;    Asymptotic normality;    Multiple bandwidth selection;    Finite-sample correction;   
DOI  :  10.1016/j.jmva.2018.04.006
来源: Elsevier
PDF
【 摘 要 】

We consider inference for the mean and covariance functions of covariate adjusted functional data using Local Linear Kernel (LLK) estimators. By means of a double asymptotic, we differentiate between sparse and dense covariate adjusted functional data - depending on the relative order of m (the discretization points per function) and n (the number of functions). Our simulation results demonstrate that the existing asymptotic normality results can lead to severely misleading inferences in finite samples. We explain this phenomenon based on our theoretical results and propose finite-sample corrections which provide practically useful approximations for inference in sparse and dense data scenarios. The relevance of our theoretical results is showcased using a real-data application. (C) 2018 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2018_04_006.pdf 342KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次