期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:153
Data-driven kNN estimation in nonparametric functional data analysis
Article
Kara, Lydia-Zaitri1  Laksaci, Ali1  Rachdi, Mustapha2  Vieu, Philippe3 
[1] Univ Djillali Liabes Sidi Bel Abbes, LSPS, Sidi Bel Abbes, Algeria
[2] Univ Grenoble Alpes, AGIM Team, AGEIS EA 7407, Grenoble, France
[3] Univ Paul Sabatier, IMT, Toulouse, France
关键词: Functional data analysis;    UINN consistency;    Functional nonparametric statistics;    kNN estimator;    Data-driven estimator;   
DOI  :  10.1016/j.jmva.2016.09.016
来源: Elsevier
PDF
【 摘 要 】

Kernel nearest-neighbor (kNN) estimators are introduced for the nonparametric analysis of statistical samples involving functional data. Asymptotic theory is provided for several different target operators including regression, conditional density, conditional distribution and hazard operators. The main point of the paper is to consider data-driven methods of selecting the number of neighbors in order to make the proposed methods fully automatic. As a by-product of our proofs we state consistency results for kNN functional estimators which are uniform in the number of neighbors (UINN). Some simulated experiences illustrate the feasibility and the finite-sample behavior of the method. (C) 2016 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2016_09_016.pdf 1277KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次