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Abstract

Kernel nearest-neighbor (kNN) estimators are introduced for the nonparametric

analysis of statistical samples involving functional data. Asymptotic theory is

provided for several different target operators including regression, conditional

density, conditional distribution and hazard operators. The main point of the

paper is to consider data-driven methods of selecting the number of neighbors

in order to make the proposed methods fully automatic. As a by-product of

our proofs we state consistency results for kNN functional estimators which

are uniform in the number of neighbors (UINN). Some simulated experiences

illustrate the feasibility and the finite-sample behavior of the method.

Keywords: Functional data analysis; UINN consistency; Functional

nonparametric statistics; kNN estimator; Data-driven estimator.
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1. Introduction

In view of their flexibility and efficiency, nonparametric k-nearest-neighbor

(kNN) smoothing methods have received a great attention in the statistical
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literature for analyzing multivariate data. Work in this direction was initiated

by Cover [12] and a very large set of papers is now available in various estimation

contexts such as regression [11, 16, 40] discrimination [18, 31], density estimation

[3, 17, 35] and clustering analysis [41]. The book by Györfi et al. [25] provides

an extensive study of kNN estimators in the finite dimensional setting.

One of the main interest of the kNN approach, compared with classical kernel

estimators, is the fact that it includes a locally adaptive smoothing parameter

allowing for the control of local heterogeneity in the data. Because the local

structures in the data are more and more influent when the dimension increases

(see, e.g., [39]) the kNN approach is particularly well adapted to multivariate

problems. In infinite-dimensional problems the need for constructing location

adaptive estimators is even more crucial; see [4] for empirical studies. There-

fore the kNN ideas are expected to lead to attractive statistical methods for

functional data analysis, and this is the point we want to address in this work.

Recently, statistical inference for Functional Data Analysis (FDA) has been

deeply investigated; see [6, 26, 27, 38, 44] for selected general books on this

topic. Nonparametric ideas have been popularized by the book of Ferraty and

Vieu [21] and now take a large place in the FDA literature; see the specific

discussions in the recent surveys by Cuevas [13] and Goia and Vieu [24]. In

particular, there is an extensive list of contributions in nonparametric functional

statistics concerning standard kernel estimators; see, e.g., [9, 20, 22, 34, 36] for

a selected set of works in this direction. However, the study of kNN methods

is still rather limited and mainly oriented towards the regression estimation

[5, 7, 29, 30, 32] or towards curves discrimination [8]. Moreover, it should be

stressed that the scant literature on functional kNN methods concerns a fixed

number of neighbors while this number needs to be data-driven in practice.

The main purpose of our paper is then to state a wide scope of asymptotic re-

sults, covering several different target operators (regression, conditional density,

conditional distribution function, conditional hazard function) and allowing for

an automatic choice data-driven of the number of neighbors. The main tool for

achieving this goal is the statement of results that are uniform in the number of
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neighbors (UINN). Thus, we establish the UINN almost-complete convergence

(a.co.2). In fact, the UINN feature allows to control the asymptotic behavior

of the estimators even if the number of neighbors is random, leading to direct

applications to data-driven selected numbers of neighbors. As far as we know,

this contribution is the first one to address the UINN properties for kNN esti-

mators since, even in the standard multivariate case, this kind of literature is

only concerned with kernel estimators. We refer to [15] for a list of references

on the uniform in bandwidths (UIBB) consistency of traditional multivariate

kernel estimators and to [28] for the functional extension.

This paper is organized as follows. We present our models and their estima-

tors in Section 2. As a preliminary result, we give in Section 3 some asymptotics

for a wide scope of kNN estimators leading directly to the main results of our pa-

per (see Section 4) about the asymptotic behavior of the kNN estimators using

a data-driven random number of neighbors. The technical proofs are postponed

to Section 6. Some simulated examples are presented in Section 5 in order to

stress the easy implementation of the method and its nice predictive behavior

in finite samples. Finally, Section 7 is devoted to comments on the results and

to related tracks for future.

2. Models and Estimators

Let (X1, Y1), . . . , (Xn, Yn) be a sample of independent and identically dis-

tributed pairs as (X, Y ) which is a random vector valued in F × R, where F is

a semi-metric space. In the following, d is a semi-metric on F , x is a fixed point

in F , Nx is a fixed neighborhood of x, and the closed ball centered at x and of

2Let z1, z2, . . . be a sequence of real random variables. We say that (zn) converges almost-

completely (a.co.) to 0 if, and only if, for all ϵ > 0,
∑∞

n=1 Pr(|zn| > ϵ) < ∞. Moreover, we say

that the rate of the almost-complete convergence of (zn) to zero is of order un (with n → 0)

and we write zn = Oa.co.(un) if, and only if, there exists ϵ > 0 such that
∑∞

n=1 Pr(|zn| >

ϵun) < ∞. This kind of convergence implies both almost-sure convergence and convergence

in probability.
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radius α is denoted

B(x, α) = {y ∈ F such that d(y, x) ≤ α} .

We study the asymptotic properties of the kNN kernel estimators in three

nonparametric conditional models. The first one is the regression model

m(x) = E(Y |x = x). (1)

This model has been widely studied in the functional context; see [22] for recent

advances. In most of the existing works, the relationship between the nonpara-

metric model and the data space is translated through the following Lipschitz

condition. Assume that for some constants β > 0 and C1 > 0 we have

∀x1,x2∈Nx |m(x1)−m(x2)| ≤ C1d
β1(x1, x2). (2)

The functional kNN regression estimator is defined by

m̂(x) =

∑n
i=1 K{H−1

k,xd(x,Xi)}Yi∑n
i=1 K{H−1

k,xd(x,Xi)}

where

Hk,x = min
{

h ∈ IR+ such that
n∑

i=1

1B(x,h)(Xi) = k
}

,

and 1A is the indicator function of the set A.

The second statistical operator that we intend to study is the conditional

probability distribution function which is defined as follows:

F x(·) = Pr(Y ≤ ·|X = x). (3)

In fact F x can be viewed as a particular case of the regression function m,

where the response Y is replaced by the indicator function 1{Y≤·}. Thus, the

functional kNN estimator of F x can be defined as

F̂ x(y) =

∑n
i=1 K{H−1

k,xd(x,Xi)}1{Yi≤y}∑n
i=1 K{H−1

k,xd(x,Xi)}
(4)

and the nonparametric model is characterized by assuming that for some β2 > 0

and some C2 > 0 one has

∀x1,x2∈Nx ∀y∈R |F x1(y)− F x2(y)| ≤ C2d(x1, x2)β2 . (5)
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Similarly, we also consider the conditional density function defined, at each

point where F x is differentiable, by

fx(·) = (F x)′(·) (6)

and for which the kNN estimator3 is defined by

f̂x(y) = L−1
ℓ,y

∑n
i=1 K{H−1

k,xd(x,Xi)}K(L−1
ℓ,y |y − Yi|)∑n

i=1 K{H−1
k,xd(x,Xi)}

where

Lℓ,y = min

{
z ∈ IR+ such that

n∑

i=1

1(y−z,y+z)(Yi) = ℓ

}

and where ℓ is a sequence of integers belonging to (ℓ1,n, ℓ2,n). The nonparametric

aspect of this model is characterized by assuming that, for all x1, x2 ∈ Nx and

for all y1, y2 in a fixed neighborhood of y we have, for some C3, β3, β4 > 0, that

|fx1(y1)− fx2(y2)| ≤ C3

{
d(x1, x2)β3 + |y1 − y2|β4

}
. (7)

It is obvious that, by combining the two last estimators, the kNN method can

be used for the estimation of the hazard operator, viz.

rx(·) =
fx(·)

1− F x(·) (8)

and the corresponding estimator is defined for all y ∈ IR such that F x(y) < 1,

by

r̂x(y) =
f̂x(y)

1− F̂ x(y)
.

3. UINN asymptotics

We start by gathering together all assumptions required to obtain our asymp-

totic results.

3To avoid tedious additional notations, we use the same kernel function K for weighting

the functional variable X and the scalar one Y , but the results stated later on in this paper

are also true for two different kernels.
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(H1) For all r > 0, Pr{X ∈ B(x, r)} =: ϕx(r) > 0 such that, for all s ∈ (0, 1),

lim
r→0

ϕx(sr)
ϕx(r)

= τx(s).

(H2) The class of functions

K = {· 7→ K{γ−1d(x, ·)}, γ > 0} is a point-wise measurable class4

such that

sup
Q

∫ 1

0

√
1 + lnN (ϵ∥F∥Q,2,K, dQ)dϵ < ∞,

where the supremum is taken over all probability measures Q on the space

F with Q(F 2) < ∞ and where F is the envelope function5 of the set K.

Here, dQ is the L2(Q)-metric and N (ϵ,K, dQ) is the minimal number of

open balls (with respect to the L2(Q)-metric) with radius ϵ which are

needed to cover the function class K. We will denote by ∥ · ∥Q,2 the

L2(Q)-norm.

(H3) The kernel K is supported within (0, 1/2) and has a continuous first deriva-

tive on (0, 1/2) which is such that

0 < C41(0,1/2)(·) ≤ K(·) ≤ C51(0,1/2)(·)

and

K(1/2)−
∫ 1/2

0

K ′(s)τx(s)ds > 0,

(H4) The sequence of numbers (k1,n) satisfies

ln n

min
{

nϕ−1
x

(
k1,n

n

)
, k1,n

} → 0.

4A class of functions C is said to be a point-wise measurable class if there exists a countable

subclass C0 such that for any function g ∈ C there exists a sequence of functions (gn)n∈IN in

C0 such that: |gn(z)− g(z)| = o(1).
5An envelope function G for a class of functions C is any measurable function such that

supg∈C |g(z)| ≤ G(z) for all z.
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We mention that most of our assumptions are standard in the functional non-

parametric context; see, Ferraty and Vieu [21]. The only condition which is

specific to our UINN purpose is Assumption (H2). The first part of (H2) is a

mild measurability restriction which will allow to state uniform results. Ob-

serve that an alternative way to deal with this problem would be to deal with

the notions of outer probability (see [42], p. 4) but this would need much more

complicated computations. Moreover, for obtaining the UINN consistency, it

is worth noticing that uniform asymptotics are closely related with the notions

of entropy and compactness. The second part in condition (H2) is a uniform

integral entropy condition used to characterize the Donsker-class of functions

[42] and allows to derive a uniform limit distribution. Note that this kind of

assumption could also be useful for evaluating moments of empirical processes

[42]. The great generality of Assumption (H2) is further underlined by the fact

that it is less restrictive than the usual VC-class condition [19].

Theorem 3.1. Under Assumptions (H1)–(H4) we have

sup
k1,n≤k≤k2,n

|F̂ x(y)− F x(y)| = O

{
ϕ−1

x

(
k2,n

n

)β1
}

+ Oa.co.

(√
lnn

k1,n

)
, (9)

and if E(|Y |q|X) < C5 < ∞, almost-surely for some q ≥ 2 and C5 > 0, then we

have

sup
k1,n≤k≤k2,n

|m̂(x)−m(x)| = O

{
ϕ−1

x

(
k2,n

n

)β
}

+ Oa.co.

(√
lnn

k1,n

)
.

Furthermore, if we replace Assumption (H4) by the following (H4’)

n lnn

ℓ1,n min
{

nϕ−1
x

(
k1,n

n

)
, k1,n

} = o(1),

then we obtain

sup
k1,n≤k≤k2,n

sup
ℓ1,n≤ℓ≤ℓ2,n

|f̂x(y)−fx(y)| = O

{
ϕ−1

x

(
k2,n

n

)β2
}

+O

(
ℓ2,n

n

)β3

+Oa.co.

(√
n lnn

ℓ1,nk1,n

)
,

and

sup
k1,n≤k≤k2,n

sup
ℓ1,n≤ℓ≤ℓ2,n

|r̂x(y)−rx(y)| = O

{
ϕ−1

x

(
k2,n

n

)β2
}

+O

(
ℓ2,n

n

)β3

+Oa.co.

(√
n lnn

ℓ1,nk1,n

)
.

The proof of this theorem is given in Section 6.
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4. Application: automatic data-driven bandwidth selection

Recall that one of the main interests of the kNN method (over usual kernel

approaches) is to provide a location adaptive smoothing parameter which is

easy to select in practice, because it depends on a single parameter. However,

theoretical advances for such a data-driven kNN procedure have still not been

stated in the literature and we will show below how the UINN results stated in

Section 3 are of interest for this purpose.

We will start by considering the most popular data-driven selection technique

which is the leave-one-out cross validation. Then, we will conclude this section

by discussing how similar results hold also easily for any other kind of automatic

selection rule. In the sequel, when it is not explicitly specified, the minimization

over the number of neighbors k (resp. ℓ) has to be understood over the values

k ∈ (k1,n, k2,n) (resp. over j ∈ (j1,n, j2,n)).

(i) Regression model:

The leave-one-out cross-validation procedure [37] consists in minimizing

the following squared prediction error criterium:

kCV.opt = arg min
k∈(k1,n,k2,n)

CV(k),

where

CV(k) =
n∑

i=1

{Yi−m̂−i(Xi)∥2 and m̂−i(x) =

∑
j ̸=i K{H−1

k,xd(x,Xj)}Yj∑n
j ̸=i K{H−1

k,xd(x,Xj)}
.

(10)

The selected value kCV.opt is a random function which depends on the whole

statistical sample (X1, Y1), . . . , (Xn, Yn) and this makes the direct study

of the corresponding kNN estimator rather difficult. The UINN results

stated below allow for getting in a very simple way the convergence rate

of

m̃CV =

∑n
i=1 K{H−1

kCV.opt(X1,Y1,...,Xn,Yn),xd(x, Xj)}Yj
∑n

i=1 K{H−1
kCV.opt(X1,Y1,...,Xn,Yn),xd(x, Xj)}

.

This is stated in the next corollary.
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Corollary 4.1. Under conditions of Theorem 3.1, we have

|m̃CV(x)−m(x)| = O

{
ϕ−1

x

(
k2,n

n

)β
}

+ Oa.co.

(√
lnn

k1,n

)
.

This result is a direct consequence of the first assertion of Theorem 3.1.

(ii) Conditional distribution function:

In the multivariate setting, De Gooijer and Gannoun [14] have proposed

some cross-validation criterion which can be adapted to the functional

setting in the following way:

CVGG(k) =
n∑

i=1

{1(Yi≤Yj) − F̂X−i
i (Yj)}2,

where

F̂X−i
i (y) =

∑
j ̸=i K{H−1

k,xd(Xi, Xj)}1{Yj≤y}∑n
j ̸=i K{H−1

k,xd(Xi, Xj)}
.

The following corollary ensures the good asymptotic behavior of the data-

driven estimator constructed with the optimal number of neighbors which

minimizes the CVGG rule.

Corollary 4.2. Under the conditions of Theorem 3.1, if F̂ x
CV (y) is the

estimator of F x(y) constructed with the cross-validation procedure CVGG,

then we have

|F̂ x
CV (y)− F x(y)| = O

{
ϕ−1

x

(
k2,n

n

)β1
}

+ Oa.co.

(√
ln n

k1,n

)
.

This result is a direct consequence of the second assertion of Theorem 3.1.

(iii) Conditional probability density: The problem of the bandwidth se-

lection in conditional density estimation has received some attention in

the multivariate statistical literature. The popular cross-validation ideas

(see Youndjé et al. [43] and references therein) can be adapted to the

functional setting in the following way. The objective is to mininize the

following errors:

err1(f̂(a,b), f) =
∫ ∫ {

f̂x
(a,b)(y)− fx(y)

}2

W1(x)W2(y) dPX(x) dy,

9



err2(f̂(a,b), f) =
1
n

n∑

i=1

{
f̂Xi

(a,b)(Yi)− fXi(Yi)
}2 W1(Xi)W2(Yi)

fXi(Yi)

or

err3(f̂ , f) =
∫ ∫

E
{

f̂x
(a,b)(y)− fx(y)

}2

W1(x)W2(y)dPX(x)dy,

where W1 and W2 are some non-negative weight functions. These theoret-

ical errors are uncomputable in practice and the following leave-one-out

cross-validation criterion can be constructed to approximate them in some

fully data-driven way:

CVCD(a, b) =
1
n

n∑

i=1

W1(Xi)
∫ (

f̂
X−i

i

(a,b)

)2

(y)W2(y)dy

− 2
n

n∑

i=1

f̂
X−i

i

(a,b)(Yi)W1(Xi)W2(Yi) (11)

where

f̂
X−i

i

(a,b) = b−1

∑n
j ̸=i K{a−1d(Xi, Xj)}K(b−1|y − Yj |)∑n

j ̸=i K{a−1d(Xi, Xj)}
.

Then the bidimensional smoothing parameter (k,ℓ) is selected by the fol-

lowing procedure:

(kCVCD.opt, ℓCVCD.opt) = arg min
k1,n≤k≤k2,n,ℓ1,n≤ℓ≤ℓ2,n

CVCD(k, ℓ).

The UINN results, stated in Section 3, allow to obtain the following con-

vergence rate for the data-driven functional cross-validated conditional

density operator.

Corollary 4.3. Under conditions of Theorem 3.1, if f̂CVCD is the con-

ditional density estimator constructed with the cross-validation procedure

CVCD, then we have

|f̂x
CVCD

(y)− fx(y)| = O

{
ϕ−1

x

(
k2,n

n

)β2
}

+ O

(
ℓ2,n

n

)β3

+ Oa.co.

(√
n lnn

ℓ1,nk1,n

)
.

This result is a direct consequence of the third assertion of Theorem 3.1.
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(iv) Some other data-driven methods: While the cross-validation proce-

dures described above aim to approximate quadratic errors of estimation,

alternative ways for choosing smoothing parameters could be introduced

aiming rather to optimize the predictive power of the method. This can

be done by minimizing one of the following prediction criterion:

(k̃(1)
CV , ℓ̃

(1)
CV ) = arg min

k1,n≤k≤k2,n,ℓ1,n≤ℓ≤ℓ2,n

n∑

i=1

(Yi − Ŷi

(1)
)2, (12)

or

(k̃(2)
CV , ℓ̃

(2)
CV ) = arg min

k1,n≤k≤k2,n,ℓ1,n≤ℓ≤ℓ2,n

n∑

i=1

(Yi − Ŷi

(2)
)2 (13)

where the prediction is performed by means either of the conditional me-

dian, i.e.,

Ŷi

(1)
= F̂ (X−i

i )−1
(1/2)

or by means of the conditional mode, viz.

Ŷi

(2)
= arg max f̂X−i

i (y).

As far as we know, such selectors did not receive mathematical attention

in the past (even in the usual multivariate situation), probably because of

technical difficulties. However, the high degree of generality of the UINN

results stated above allows us, as an easy direct consequence of Theorem

3.1, to state the following rates of convergence for the corresponding data-

driven estimators.

Corollary 4.4. Let j = 1 or j = 2, and denote by F̂ (j),x, f̂ (j),x and ĥ(j),x

respectively the estimators F̂ , f̂ and ĥ which are constructed with plugging

the optimal numbers of neighbors k̃
(j)
CV and l̃

(j)
CV . Then, the following three

11



results hold:

|F̂ (j),x(y)− F x(y)| = O

{
ϕ−1

x

(
k2,n

n

)β1
}

+ Oa.co.

(√
ln n

k1,n

)
,

|f̂ (j),x(y)− fx(y)| = O

{
ϕ−1

x

(
k2,n

n

)β2
}

+ O

(
ℓ2,n

n

)β3

+ Oa.co.

(√
n lnn

ℓ1,nk1,n

)

and

|r̂(j),x(y)− rx(y)| = O

{
ϕ−1

x

(
k2,n

n

)β2
}

+ O

(
ℓ2,n

n

)β3

+ Oa.co.

(√
n lnn

ℓ1,nk1,n

)
.

5. A simulation study

The objective of this section is two-fold. First, we will show that the auto-

matic kNN procedures can be easily implemented. Then, we will compare them

with the usual kernel procedure in order to stress how the local feature of the

kNN approach allow to reduce nicely the prediction errors.

5.1. Presentation of the study

We consider the following functional nonparametric model:

∀i∈{1,...,n=300} Yi = m(Xi) + εi, (14)

where the εi’s are generated independently according to aN (0, 0.05) distribution

and are assumed to be independent of Xi for all i ∈ {1, . . . , n}. The sampled

functional explanatory variables are generated as follows, for each i ∈ {1, . . . , n}:

∀t∈(0,π) Xi(t) = cos(2ait) + sin(2t + bi) + cit,

where ai ∼ N (0, 1), bi ∼ N (3, 1), and ci ∼ U(0, 1). The curve X1, . . . , Xn are

then discretized on the same grid generated from 100 equispaced measurements

in (0, π). The curves are plotted in Figure 1.

The scalar response Yi is defined by (14) by using the regression operator:

m(x) = 5 exp




1∫ π

0

{1 + x2(t)}dt


 .

12
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Figure 1: A sample of 300 curves

All along the construction of the various kNN estimators we have used the

semi-metric

d(u, v) =
∫ π

0

{u(t)− v(t)}2dt

and the kernel function

K(t) =
3
4

(1− t2)1(0,1).

The routines used for computing the functional estimators are available at the

website www.lsp.ups-tlse.fr/staph/npfda.

5.2. Automatic selection of the numbers of neighbors

First of all we will describe how the numbers of neighbors are crucial param-

eters for the behavior of the estimators. To cover the wide variety of operators

(regression, conditional distribution and conditional density operator) we will

look at predictors based on these operators (conditional expectation, condi-

tional median and conditional quantile). So, the techniques used for neighbors

selection are those motivated in (10), (12) and (13). We have computed the

corresponding prediction errors:

MSEreg(k) =
1
n

n∑

i=1

(
Yi − Ŷi

(regk))2
,

13



MSEmedian(k) =
1
n

n∑

i=1

(
Yi − Ŷi

(mediank))2

and

MSEmode(k, ℓ) =
1
n

n∑

i=1

(
Yi − Ŷi

(modek,ℓ))2

where

Ŷi

(regk)
=

∑
j ̸=i K{H−1

k,xd(x,Xj)}Yj∑n
j ̸=i K{H−1

k,xd(x,Xj)}
,

Ŷi

(mediank)
= F̂ (X−i

i )(1/2),

and Ŷi

(modek,ℓ)
= arg max f̂X−i

i (y).

Such errors are evaluated over a sequence of numbers of neighbors defined by

{5, 10, 15, . . . , 300}. The estimator Ŷi

(regk)
is obtained by the R-routine

named funopare.kNN.gcv, while the estimators Ŷi

(mediank)
and Ŷi

(modek,ℓ)
are

obtained by the routines funopare.mode.lcv and funopare.quantile.lcv.6.

The results are summarized in Figure 2 for the regression and the conditional

median predictors. Concerning the conditional mode, because the estimator

involves two parameters ℓ and k, the results are presented in Figure 3 by means

of two plots: the left panel shows how the behavior of the error as a function of ℓ

(when k is fixed to its optimal value kopt) while the plot in the right panel shows

the behavior of the error as function of k (when k is fixed to its optimal value

ℓopt). In each plot a horizontal line shows the minimal value of the prediction

error.

The high variability of the MSE errors show that the kNN methods are very

sensitive to the choice of the number of neighbors, and stress the interest for

choosing in each situation the optimal value which is the one obtained by min-

imizing the above discussed data-driven criterion.

6All these routines are available at www.lsp.ups-tlse.fr/staph/npfda
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Figure 2: Prediction errors as function of the number of neighbors. Left plot: Regres-

sion predictor; Right plot: conditional median predictor.

5.3. Comparative study

The aim of this section is to compare the kNN approach with an usual

global kernel one. For that, we have computed the optimal errors with kNN

approaches, namely:

kNNMSE(reg) := MSEreg(k.opt)

kNNMSE(median) := MSEmedian(k.opt)

and

kNNMSE(mode) := MSEmode(k.opt, ℓ.opt)

and we compared with their analogous obtained with global fixed bandwidth:

KERMSE(reg) :=
1
n

n∑

i=1

(Yi − Ỹi

(rega.opt)
)2

KERMSE(median) :=
1
n

n∑

i=1

(Yi − Ỹi

(mediana.opt)
)2

and

KERMSE(mode) :=
1
n

n∑

i=1

(Yi − Ỹi

(modea.opt, b.opt)
)2
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Figure 3: Prediction errors as function of the number of neighbors with conditional

mode predictor. Left plot: k is fixed; Right plot: ℓ is fixed.

where

Ỹi

(rega)
=

∑
j ̸=i K{a−1d(x,Xj)}Yj∑n

j ̸=i K{a−1d(x, Xj)}
, Ỹi

(mediana)
= F̃a

(X−i
i )−1

(1/2)

and

Ỹi

(modea, b)
= arg max f̃a,b

X−i
i (y)

with

F̃a

x
=
∑n

i=1 K{a−1d(x,Xi)}1(Yi ≤ y)∑n
i=1 K{a−1d(x,Xi)}

and

f̃a,b

x
(y) = b−1

∑n
i=1 K{a−1d(x,Xi)}K(b−1|y − Yi|)∑n

i=1 K{a−1d(x,Xi)}
.

It should be stressed here that in the three last cases the optimal smoothing

parameters a.opt and/or b.opt are chosen among a sequence of quantiles of the

distances vector between the functional variable (resp. between the response

variables).

All the results are summarized in Table 1, where we observe that the kNN

method leads to an important reduction of the prediction errors (at least of 25%)

for each predictor (either based on regression, on conditional distribution or on

conditional density). On this example the predictor based on the conditional
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mode seems to be more efficient than the two other ones which are based on the

conditional expectation or on the conditional median.

Methods Mode Median Regression

Kernel method 0.081 0.11 0.11

kNN method 0.046 0.087 0.086

Table 1: MSE results

6. Proofs of the results of Sections 3 and 4

In what follows, when there is no confusion, we denote by C or/and C ′ any

generic positive constants. For brievity, we only give full details for the proof

concerning the conditional cumulative distribution function estimator. Proofs

of the other cases follow along the same lines and are therefore presented in a

much more synthetic way, but they may be obtained on request.

• Proof of Theorem 3.1. Let us begin by showing (9). For this, we denote:

zn = O

{
ϕ−1

x

(
k2,n

n

)β1

+

√
ln n

k1,n

}

and we write for some α ∈ (0, 1),

sup
k1,n≤k≤k2,n

|F̂ x(y)− F x(y)| = sup
k1,n≤k≤k2,n

|F̂ x(y)− F x(y)|1{
ϕ−1

x

(
α

k1,n
n

)
≤Hk,x≤ϕ−1

x

(
k2,n
αn

)}

+ sup
k1,n≤k≤k2,n

|F̂ x(y)− F x(y)|1{
Hk,x ̸∈

(
ϕ−1

x

(
αk1,n

n

)
, ϕ−1

x

(
k2,n
αn

))}.

Thus, for all ϵ > 0, we have

Pr

{
sup

k1,n≤k≤k2,n

|F̂ x(y)− F x(y)| ≥ ϵzn

}

≤ Pr



 sup

k1,n≤k≤k2,n

|F̂ x(y)− F x(y)|1{
ϕ−1

x

(
αk1,n

n

)
≤Hk,x≤ϕ−1

x

(
k2,n
nα

)} ≥ ϵzn

2





+Pr
{

Hk,x ̸∈
(

ϕ−1
x

(
αk1,n

n

)
, ϕ−1

x

(
k2,n

nα

))}
.
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So to show that

sup
k1,n≤k≤k2,n

|F̂ x(y)− F x(y)| = Oa.co.(zn),

it suffices to prove the three following results:

∑

n

k2,n∑

k=k1,n

Pr
{

Hk,x ≤ ϕ−1
x

(
αk1,n

n

)}
< ∞, (15)

∑

n

k2,n∑

k=k1,n

Pr
{

Hk,x ≥ ϕ−1
x

(
k2,n

nα

)}
< ∞, (16)

sup
ϕ−1

x

(
k1,n

n

)
≤h≤ϕ−1

x

(
k2,n

n

) |F̃ x(y)− F x(y)| = Oa.co.(zn), (17)

where

F̃ x(y) =
∑n

i=1 K{h−1d(x,Xi)}1{Yi≤y}∑n
i=1 K{h−1d(x,Xi)}

.

The proof of (17) is not presented here because it follows, step by step,

the same argument as for Theorem 3.1 in Kara et al. (2015). Assertions

(15) and (16) require much more attention. Thus the latter will be pre-

sented with much details. A key tool is the following version of Chernoff’s

inequality whose proof will be given at the end of this section.

Lemma 6.1. Let U1, . . . , Un be independent Bernoulli random variables

with Pr(Ui = 1) = p for all i ∈ {1, . . . , n}. Set U = X1 + · · · + Xn and

µ = pn. Then, for any ω > 0, we have

Pr {U ≥ (1 + ω)µ} ≤ exp
{
−µmin

(
ω2, ω

)
/4
}

(18)

and if ω ∈ (0, 1), we have

Pr {U ≤ (1− ω)µ} ≤ exp
{
−µ
(
ω2/2

)}
. (19)

Then, by using Lemma 6.1, we can write

Pr
{

Hk,x ≤ ϕ−1
x

(
αk1,n

n

)}
= Pr

{
n∑

i=1

1
B

(
x,ϕ−1

x

(
αk1,n

n

)) > k

}

= Pr

{
n∑

i=1

1
B

(
x,ϕ−1

x

(
α

k1,n
n

)) >
k

αk1,n
αk1,n

}

≤ exp {−(k − αk1,n)/4} .
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Therefore one has,
k2,n∑

k=k1,n

Pr
{

Hk,x ≤ ϕ−1
x

(
αk1,n

n

)}
≤ k2,n exp {−(1− α)k1,n/4} ≤ n1−{(1−α)/4} k1,n

ln n .

In a similar fashion, we get

Pr
{

Hk,x ≥ ϕ−1
x

(
k2,n

αn

)}
≤ exp

{
− (k2,n − αk)2

2αk2,n

}
.

It follows that
k2,n∑

k=k1,n

Pr
{

Hk,x ≥ ϕ−1
x

(
k2,n

αn

)}
≤ k2,n exp {−(1− α)k1,n/2α}

≤ n1−{(1−α)/2α} k2,n
ln n .

Because k1,n/ lnn →∞ we finally obtain (15) and (16). The proof of (9)

is now complete. The other assertions of Theorem 3.1 can be obtained in

a similar way.

• Proof of Corollary 4.2. Let k̃, ℓ̃ be any random pair taking values into

(k1, k2)× (ℓ1, ℓ2), and denote by F̂ x the estimator, defined in (4), but by

using the random numbers of neighbors k̃ and ℓ̃. As a direct consequence

of the UINN result (9), we get

|F̂ x(y)− F x(y)| = O

{
ϕ−1

x

(
k2,n

n

)β1
}

+ Oa.co.

(√
lnn

k1,n

)
. (20)

It suffices to remark that Corollary 4.2 is a special case of (20) when the

pair (k̃, ℓ̃) is the cross-validated one which is obtained by minimizing the

criterion CVGG.

• Proofs of Corollaries 4.1, 4.3 and 4.4. In the same way, one can obtain

results of the same kind as (20) for other kNN estimators using a ran-

dom number of neighbors, from which Corollaries 4.1, 4.3 and 4.4 follow

directly.

• Proof of the Chernoff-type inequalities in Lemma 6.1. Let 0 ≤ τ ≤ 1− p.

By the Markov inequality we get, for any ζ > 0,

Pr {U ≥ n(p + τ)} ≤ E(eζU )
eζn(p+τ)

≤ (peζ + 1− p)n

eζn(p+τ)
.
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Taking now ζ = ln{(1 − p)(p + τ)/(p(1 − p − τ))}, we arrive at the most

usual form of Chernoff’s inequality, viz.

∀τ∈[0,1−p] Pr{U ≥ n(p + τ)} ≤
( p

p + τ

)n(p+τ)( 1− p

1− p− τ

)n(1−p−τ)

. (21)

This inequality will be the starting point for proving the two results (18)

and (19) stated in Lemma 6.1.

– Proof of (18). Let ω > 0. Applying the result (21) with τ = pω leads

to

Pr{U ≥ µ(1 + ω)} ≤
( 1

1 + ω

)nµ(1+ω)( 1− p

1− p− pω

)n(1−p−pω)

. (22)

By a simple two-order Taylor expansion, we can also show that

ln

{
(1 + ω)µ(1+ω)

(
1− p− pω

1− p

)1−p−pω
}
≥ p

4
min(ω2, ω). (23)

Finally, the claimed result (18) follows directly from (22) and (23).

– Proof of (19). By applying the result (21) to the variables Vi = −Ui

and by taking τ = pω, we get directly that

Pr{U ≤ (1− ω)µ} ≤ e−µω

(1− ω)µ(1−ω)
. (24)

Recall that to get the assertion (19), we assumed that 0 < ω < 1.

By some simple analytic arguments one can see that

ln(1− ω) ≥ ω2/2− ω

1− ω
. (25)

Finally, the claimed result (19) follows directly from (24) and (25).

7. Concluding remarks

This paper has started by providing UINN (uniform in number of neighbors)

rates of consistency for a wide class of nonparametric kNN estimators with func-

tional data (see Section 3) contributing to the knowledge of kNN estimators of

the functional regression. The main use of this new kind of asymptotic results is
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to derive asymptotic theory for data-driven kNN estimators (see Section 4). The

paper is written in a rather general form allowing for several different operators

estimation problems (regression, density, cumulative distribution function, and

hazard operators), and for a wide scope of data-driven number of neighbors se-

lectors. A special attention is given, in Section 4, to selection procedures based

on cross-validation ideas. The results of Section 4 are, as far as we know, the

first ones in the literature concerning operators other than regression. More-

over, and maybe more importantly, they are the first ones in the functional

kNN setting. We would like to stress that our paper has been deliberately the-

oretically oriented. However, in spite of the technical feature linked with UINN

asymptotics, the mathematical results provided in Section 3 are not only in-

teresting in themselves but also (and maybe more importantly) for their direct

applied impacts since the consequences derived in Section 4 make the kNN ap-

proaches automatically usable in practice. These facts are briefly mentioned in

the simulations presented in Section 5.

It should be stressed that even if functional data is the main purpose of this

work, it has been written in such a way that it also be applied directly to the

multivariate setting; it suffices to take F = Rp in the models of Section 2. In such

a specific multivariate situation, as well as the UINN results of Section 3, the

data-driven rules of Section 4 are extensions of those existing in the literature.

To conclude, it is important to keep in mind that kernel techniques are

not also useful in purely nonparametric models like those investigated herein

but also in semi-parametric models. The study of data-driven kNN methods

in the functional semi-parametric modeling is, as far as we known, a totally

underdeveloped field. Our guess is that the UINN approach developed in our

paper could also be used in many semi-parametric functional situations such as

the functional projection pursuit regression [10], single index model [23], partial

linear models [1, 33] or sparse modeling [2].
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