期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:181
Kernel density estimation on symmetric spaces of non-compact type
Article
Asta, Dena Marie1 
[1] Ohio State Univ, Dept Stat, 1958 Neil Ave, Columbus, OH 43210 USA
关键词: Harmonic analysis;    Helgason-Fourier transform;    Kernel density estimator;    Non-Euclidean geometry;    Non-parametric;   
DOI  :  10.1016/j.jmva.2020.104676
来源: Elsevier
PDF
【 摘 要 】

We construct a kernel density estimator on symmetric spaces of non-compact type and establish an upper bound for its convergence rate, analogous to the minimax rate for classical kernel density estimators on Euclidean space. Symmetric spaces of non-compact type include hyperboloids of constant curvature -1 and spaces of symmetric positive definite matrices. This paper obtains a simplified formula in the special case when the symmetric space is the space of normal distributions, a 2-dimensional hyperboloid. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2020_104676.pdf 1002KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次