期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS | 卷:181 |
Kernel density estimation on symmetric spaces of non-compact type | |
Article | |
Asta, Dena Marie1  | |
[1] Ohio State Univ, Dept Stat, 1958 Neil Ave, Columbus, OH 43210 USA | |
关键词: Harmonic analysis; Helgason-Fourier transform; Kernel density estimator; Non-Euclidean geometry; Non-parametric; | |
DOI : 10.1016/j.jmva.2020.104676 | |
来源: Elsevier | |
【 摘 要 】
We construct a kernel density estimator on symmetric spaces of non-compact type and establish an upper bound for its convergence rate, analogous to the minimax rate for classical kernel density estimators on Euclidean space. Symmetric spaces of non-compact type include hyperboloids of constant curvature -1 and spaces of symmetric positive definite matrices. This paper obtains a simplified formula in the special case when the symmetric space is the space of normal distributions, a 2-dimensional hyperboloid. (C) 2020 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmva_2020_104676.pdf | 1002KB | download |