期刊论文详细信息
NEUROCOMPUTING 卷:173
Sparse density estimator with tunable kernels
Article
Hong, Xia1  Chen, Sheng2,3  Becerra, Victor M.1 
[1] Univ Reading, Sch Syst Engn, Reading RG6 6AY, Berks, England
[2] Univ Southampton, Elect & Comp Sci, Southampton SO17 1BJ, Hants, England
[3] King Abdulaziz Univ, Jeddah 27589, Saudi Arabia
关键词: Probability density function;    Kernel density estimator;    Sparse modeling;    Minimum integrated square error;   
DOI  :  10.1016/j.neucom.2015.08.021
来源: Elsevier
PDF
【 摘 要 】

A new sparse kernel density estimator with tunable kernels is introduced within a forward constrained regression framework whereby the nonnegative and summing-to-unity constraints of the mixing weights can easily be satisfied. Based on the minimum integrated square error criterion, a recursive algorithm is developed to select significant kernels one at time, and the kernel width of the selected kernel is then tuned using the gradient descent algorithm. Numerical examples are employed to demonstrate that the proposed approach is effective in constructing very sparse kernel density estimators with competitive accuracy to existing kernel density estimators. (C) 2015 Published by Elsevier B.V.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_neucom_2015_08_021.pdf 390KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次