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a b s t r a c t

We construct a kernel density estimator on symmetric spaces of non-compact type and
establish an upper bound for its convergence rate, analogous to the minimax rate for
classical kernel density estimators on Euclidean space. Symmetric spaces of non-compact
type include hyperboloids of constant curvature −1 and spaces of symmetric positive
definite matrices. This paper obtains a simplified formula in the special case when the
symmetric space is the space of normal distributions, a 2-dimensional hyperboloid.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Data, while often expressed as collections of real numbers, are often more naturally regarded as points in non-Euclidean
paces. To take an example, radar systems can yield the data of bearings for planes and other flying objects; those bearings
re naturally regarded as points on a sphere [13]. To take another example, diffusion tensor imaging (DTI) can yield
nformation about how liquid flows through a region of the body being imaged; that three-dimensional movement can
e expressed in the form of symmetric positive definite (3 × 3)-matrices [13]. To take yet another example, the nodes of

certain hierarchical real-world networks can be regarded as having latent coordinates in a hyperboloid [1,8]. In all such
examples, the spaces can be regarded as subsets of Euclidean space even though Euclidean distances do not reflect true
distances between points. An ordinary kernel density estimator (KDE) applied to sample data generally will not be optimal
in terms of the L2-risk with respect to the volume measure on the non-Euclidean manifold.

The idea of kernel density estimation is to smooth out, or convolve, an empirical estimator (an average of Dirac
distributions centered at the data) with a smooth rapidly decaying kernel so as to obtain a smooth estimate of the true
density. The literature offers some variants of kernel density estimation on non-Euclidean spaces. A simple variant, for
compact manifolds [11] or more general compact subsets of manifolds [2,3], applies a Euclidean kernel having supports
small enough to fit inside the charts. A more general version, defined on complete manifolds, generalizes the kernel to
be defined on the tangent bundle — in effect, requiring a kernel for each point [7]. Minimax rates of convergence have
been proven for all of these different variants in terms of a Hölder class exponent [7,11]. It is desirable to refine these
convergence rates based on Sobolev constraints on the true densities.
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On symmetric spaces like Euclidean space, a kernel need only be defined at one point and transported everywhere
else. All symmetric spaces X can be decomposed into symmetric spaces of Euclidean, compact, and noncompact type in
such a way that a KDE on X can be constructed from KDEs on the three types. Symmetric spaces of the first two type
admit KDEs with minimax convergence rates. The goal of this paper is to begin to complete the picture for symmetric
spaces of noncompact type, by proving the upper bound part of a conjectured minimax rate.

Kernel density estimation for random variables can be interpreted as an estimate of a Fourier transform of the density.
Thus for manifolds on which Fourier analysis generalizes, there should exist some generalization of the KDE. One of the
earliest such Fourier-based generalizations of the KDE is defined for compact manifolds and shown to be minimax [5].
Certain density estimators on the non-compact Poincaré halfplane [6] and the space of symmetric positive definite
matrices, based on Helgason–Fourier Analysis, have been shown to be minimax for estimation from corrupted samples.
In the special case where the noise is non-existent, these estimators can be regarded as special cases of a KDE where the
kernel is a natural generalization of the sinc kernel. However, these estimators have not been shown to be minimax for
estimation from uncorrupted samples. Moreover, the full of generality of Helgason–Fourier Analysis is not exploited in
defining and analyzing this estimator.

The Helgason–Fourier transform, unlike the ordinary Fourier transform, sends functions on a symmetric space of
noncompact type to functions on a different frequency space. The exact form of this frequency space, much less a usable
formula for the transform, depends on a geometric understanding the original space. Countless symmetric spaces of
interest in applications have well-understood geometries. When the original space is the Poincaré halfplane, for example,
the frequency space is a cylinder. The Helgason–Fourier transform, like the ordinary Fourier transform, is an isometry on
L2-function spaces and sends convolutions to products in a certain sense.

This paper uses the Helgason–Fourier transform to construct and analyze a version of a KDE on symmetric spaces
of noncompact type. We define a kernel density estimator for symmetric spaces of non-compact type X, for which
Helgason–Fourier transforms are defined. Unlike the non-Fourier-based variant [11] for compact manifolds, this variant
is differentiable everywhere and estimates densities with non-compact support. The analogue of a kernel is often just a
density on a space G of isometries invariant with respect to the subgroup H of G for which X = G/H. An example is a
Gaussian, a solution to the H-invariant heat equation, We bound risk in terms of bandwidth h, the number n of sample
points, a Sobolev parameter α, and the sum of the restricted roots of X [Theorem 1]. Optimizing h in terms of n, we obtain
an upper bound of

n−2α/(2α+dimX),

for the convergence rate, where α is a Sobolev parameter, under natural assumptions on the density space [Theorem 1].
We then obtain a simplified formula, that can be implemented on a computer, for the special case where X is the
2-dimensional hyperboloid of constant curvature −1. The proof for the upper bound of the convergence rates adapts
techniques used in [6]. We conjecture that the same upper bound yields a lower bound and hence a minimax rate, and a
proof is reserved for future work.

2. Preliminaries

We recall some preliminary constructions and results in this section. First, we recall the construction of a KDE, including
a Fourier-based interpretation. We then recall some of the theory of symmetric spaces. Finally, we recall the theory of
Helgason–Fourier Analysis.

2.1. Kernel density estimation

The kernel density estimator (KDE) f (h)(X1,...,Xn)
: R → R, defined by

f (h)(X1,X2,...,Xn)
(x) =

1
nh

n∑
i=1

K
(
x − Xi

h

)
, (1)

estimates a density f on R based on some observed points X1, . . . , Xn identically and independently sampled from f , a
tunable bandwidth h > 0, and a fixed choice of kernel function K , which in most cases amounts to a symmetric unimodal
Lebesgue density on R having mode 0.

A generalization of the KDE for certain Riemannian manifolds X is

f (h)(X1,X2,...,Xn)
(x) =

1
nhdim X

n∑
i=1

θXi (x)
−1K

(
dist(x − Xi)

h

)
, (2)

where θp denotes the density of the volume measure on the Riemannian manifold [11]. For Euclidean space, θp is just
the constant 1 function and K can be taken to be a general kernel function. For compact manifolds, K is taken to have
support [−1,+1] and bandwidth h is bounded by the injectivity radius of the manifold. In these cases, (2) integrates to
1, defines a density when K is non-negative, and converges to f at a minimax rate in a suitable sense [11].
2
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One way to think about kernel density estimation is that it is an estimation of the characteristic function φX of a
random variable X , defined by

φX (t) = E[eitX ]. (3)

An empirical characteristic function φ̂x1,...,xn , defined by

φ̂x1,...,xn (t) =
1
n

n∑
i=1

eitxi , (4)

estimates φX based on some observed points x1, . . . , xn sampled from X . While (3) often admits a convergent inverse
Fourier transform, (4) does not. Therefore while the density for X can often be recovered by taking the inverse Fourier
transform of (3), an estimated characteristic function for X does not analogously give an estimated density for X . Instead,
(4) needs to be dampened by a rapidly decaying function F[Kh], after which it is in L2(R) and therefore has a well-defined
inverse Fourier transform. If F[K ] is fixed and F[Kh](s) is set to be F[K ](hs), one then recovers the original definition (1)
of a KDE. What is more, Fourier Analysis then makes it then possible to prove that the standard KDE achieves a minimax
rate for densities in a Sobolev ball. Thus different types of Fourier transforms give different variants of the standard KDE.
In this way, an alternative to (2) for certain compact spaces achieves a minimax rate for densities in a Sobolev ball.

2.2. Symmetric spaces

This paper assumes the basic definition of a smooth manifold. A Riemannian manifold is a smooth manifoldM equipped
with a Riemannian metric, a choice of inner product gx : TxM⊗TxM → TxM on the real tangent vector spaces TxM smoothly
varying in x ∈ M . The formula

∫
t⟨γ

′(t), γ ′(t)⟩ dt for arc lengths of curves γ : [0, 1] → Rn straightforwardly generalizes
to a definition of arc lengths of curves, and hence of geodesics and distances between points, in Riemannian manifolds.
An isometry between Riemannian manifolds is a smooth map of manifolds whose differential defines an isometry of
tangent spaces. An involution at a point x in a Riemannian manifold M is an isometry ϕ : M ∼= M fixing x such that the
induced linear isometry (∂ϕ)x : TxM → TxM is defined by scalar multiplication by −1. A Riemannian symmetric space is
a Riemannian manifold admitting an involution at each of its points. For background on the basic theory of Riemannian
symmetric spaces, the reader is referred to [9].

If a Riemannian symmetric space X decomposes as a product X = Y × Z of such spaces, then KDEs on the factors
Y and Z can be combined to give a KDE on the entire space. If a Riemannian symmetric space X is a quotient E/G of a
Riemannian symmetric space E by the action of a discrete group G, then a KDE on X can be defined as the restriction
of a KDE on E by identifying all but a Borel measure 0 subspace of X with a subspace of E. Therefore it suffices to
restrict our attention to irreducible simply connected Riemannian symmetric spaces, Riemannian symmetric spaces that
do not admit decompositions into a product of non-trivial Riemannian symmetric spaces and do not arise as quotients
E/G of Riemannian symmetric spaces E by non-trivial discrete groups G. The irreducible simply connected Riemannian
symmetric spaces fall into three types: Euclidean, compact, and non-compact (and non-Euclidean). A minimax KDE on
Euclidean space is classical. A minimax KDE on compact Riemannian manifolds already exists. This paper focuses on the
(irreducible, simply connected, and) noncompact case.

Such spaces admit the following algebraic characterization. Recall that a Lie group is a smooth manifold G that is at
once a group in such a way that the multiplication G × G → G and inversion G → G are smooth maps. Let G be a
noncompact semisimple Lie group, a noncompact connected Lie group with finite center containing no non-trivial normal
connected Abelian subgroups. Then G admits an Iwasawa decomposition G = HAN, a decomposition of G as the space
HAN of all triple products of elements from a maximal compact Lie subgroup H ⩽ G, an Abelian Lie subgroup A ⩽ G,
and nilpotent Lie subgroup N ⩽ G. (Since the symbol K will assume its traditional role in statistics as denoting a kernel,
the symbol H is used here to denote a maximal compact subgroup of G.) Nilpotency means that Nk is the trivial group
for large enough k ≫ 0, where N0 = N and Ni+1 is the subgroup of N generated by all elements of the form xyx−1y−1

for x ∈ Ni and y ∈ N. In practice, G is a suitable group of matrices under matrix multiplication, A is a group of diagonal
matrices and N is a group of upper triangular matrices.

Example 1. The group SL2 has Iwasawa decomposition

SL2 = SO2R+R,

where the positive reals R+ (under the operation of multiplication) is identified with the diagonal (2 × 2)-matrices
in SL2 with positive entries and the reals R (under the operation of addition) is identified with the upper triangular
(2 × 2)-matrices with 1’s along the diagonal.

Let X be the smooth manifold defined as the quotient space

X = G/H ∼= AN.

The space X is a smooth manifold with smooth structure characterized by the property that precomposition with the

natural function G → G/H bijectively identifies smooth functions G/H → R with smooth functions φ : G → R which are

3



D.M. Asta Journal of Multivariate Analysis 181 (2021) 104676

r
w
t
i

E
d

o

T

T

[
u
s
f
o

T
a

E

2

i
H

ight-H-invariant (φ(gh) = φ(g) for all h ∈ H). A choice of a bi-H-invariant, left G-invariant inner product on g passes to a
ell-defined G-invariant inner product on a tangent space of X, which in turn uniquely extends to a Riemannian metric
urning X into a Riemannian symmetric space. Conversely, every Riemannian symmetric space of noncompact type arises
n this manner.

xample 2. Continuing Example 1, we can give an algebraic construction of the Poincaré halfplane H2, the 2-manifold
efined as the subspace

H2 = {z ∈ C | Im(z) > 0},

f C equipped with the Riemannian metric given by the arc length

ds2 = (Im z)−2(d(Re z)2 + d(Im z)2).

he matrices in SL2 act on H2 as Möbius transformations:(
a b
c d

)
(z) =

az + b
cz + d

.

he matrices in SL2 fixing i ∈ H2 form the matrix subgroup SO2. The action of SL2 on H2 implicitly gives a well-defined
bijection SL2/SO2

∼= H2 sending an equivalence class of a matrix m ∈ SL2 to m(i) ∈ H2. This bijection H2 ∼= SL2/SO2
defines an isometry for a suitable choice of bi-SO2-invariant inner product on the Lie algebra sl2 associated to SL2
14, §3.1]. Thus H2 is a Riemannian symmetric space. This space can be interpreted as the information manifold of all
nivariate normal distributions, where the real coordinates describe the means, and the imaginary coordinates describe
tandard deviations, and the Riemannian metric is the Fisher metric. Alternatively, this space is a natural latent space for
amilies of random graphs used to model real-world networks [8]. Alternatively, this space models electrical impedances
n which certain circuit elements act as Möbius transformations [6].

From now on, fix a semisimple Lie group G having finite center with Iwasawa decomposition G = HAN and let X = G/H.
Let g, a, n denote the Lie algebras of the respective Lie groups G,A,N, their tangent spaces over identities. Recall that the
exponential map exp : a → A is defined as sending a tangent vector v to γv(1) ∈ A for γv the unique continuous group
homomorphism γ : R → A with γ ′(0) = v. For each x ∈ X, there exist unique elements a(x) ∈ a and n(x) ∈ N such that
x = exp(a(x))n(x).

Example 3. Continuing Examples 1 and 2, for each z ∈ H2,

n(z) =

(
1 Re z
0 1

)
, exp(a(z)) =

( √
Im z 0
0 (

√
Im z)−1

)
.

Let [−,−] : g× g → g denote the Lie bracket operation, defined in the case G is a group of (n× n)-invertible matrices
and thus g is a vector space of (n × n)-matrices, by [v,w] = vw −wv. Recall that the Killing form on g is the symmetric
bilinear map κ : g × g → R sending a pair (v,w) of tangent vectors to the trace of the operator [x, [y,−]] on g. The
Killing form on g restricts to an inner product on a. In this manner, a∗ will sometimes be naturally identified with a along
the adjoint of this inner product, and a will often by identified with the Lebesgue measure space Rdim a along an isometry
between the two. Let M be the set of all elements in H commuting with all elements in A. Then let B = H/M. For each
λ ∈ a∗, let gλ denote the space of all g ∈ g with λ(x)g = xg − gx for all x ∈ a. The restricted root system Λ of G is the set
of all λ ∈ a∗ with dim gλ > 0. A positive restricted root system is a choice of subset Λ+ ⊂ Λ such that Λ = Λ+

∪ −Λ+

and Λ+
∩ −Λ+

= ∅. Set

wX = #{kM | kA = Ak, k ∈ H}, ρX =
1
2

∑
λ∈Λ+

dim gλ.

he root systems Λ play a pivotal role in the classification of symmetric spaces. Note that the choice of Λ+, and hence
lso of ρX, are only unique up to sign.

xample 4. For H2 = SL2/SO2, we have the following [14, §3.1]:

ρH2 = 1/2, wH2 = 1.

.3. Helgason-Fourier analysis

Helgason–Fourier Analysis is an analogue of Fourier Analysis for symmetric spaces of noncompact type. The reader
s referred to [12, Section 2] for a concise summary of the theory and [14] for details in the special case X = H2. The
elgason–Fourier transform of f ∈ L1(X, dx) at λ ∈ a∗ and b = kM ∈ B = H/M, when it exists, is

(Hf )(λ, b) =

∫
f (x)e−s(a(k−1g)) dx,
x=gH∈X=G/H

4
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here s = ρX − iλ lies in the complexification of a∗, and dx is the intrinsic volume measure on X . The Helgason–Fourier
ransform defines a linear map

H : L2(X, dx) → L2
(
a∗

× B, |c|−2dλ db
)
.

uch that we have the following Plancharel identity∫
X
|f (x)|2dx = w−1

X

∫
λ∈a∗

∫
b∈B

|Hf (λ, b)|2 |c(λ)−2
| dλ db. (5)

Here dλ is the Lebesgue measure under the natural identification a∗ ∼= Rr , db is a suitably normalized K -invariant
easure, and c is the Harish-Chandra c-function a∗

→ R [4]; a proper treatment of the latter, while fundamental
hroughout geometric analysis, is beyond the scope of the paper. However, the following exact formula is used in the
pecial case X = H2.

xample 5. Continuing Examples 2 and 1,

c(λ) =
1

8π2 λ tanh(πλ).

The basic property of the Harish-Chandra c-function needed in the proofs is the following growth bound, noted in [10].

emma 1. For each λ ∈ a∗, |c(λ)|−2 ⩽ (1 + |λ|)dim n.

The Helgason–Fourier transform H sends convolutions to products:

H[fGX ] = H[fG]H[fX ]

for each bi-H-invariant density fG ∈ L2(G) of a random quantity G on G, identified with the induced left-H-invariant density
n X, and density fX of a random quantity X on X, where fGX is the density associated to GX .
The Sobolev ball Fα(Q ) in L2(X) can be defined as

Fα(Q ) = {f ∈ L2(X) | ∥∆α/2f ∥2 ⩽ Q },

ust as in the Euclidean case, except that here ∆α/2f is defined by

H[∆α/2f ](λ, b) = (−ρ2
X − λ2)α/2H[fX ](λ, b)

The inverse Helgason–Fourier transform, written H−1, is given by

H−1ψ(x) = w−1
X

∫
a∗

∫
B
ψ(λ, kM)e(ρX−iλ)(a(k−1x))

|c|−2dλ db,

We can recover f ∈ C∞
c (X) from its transform by the inversion formula

f = H−1Hf .

.4. G-kernel density estimation

In an analogy with the classical definition, define the characteristic function

φX : a∗
× B → C

f a random quantity gH on the symmetric space X = G/H by

φX (s, kM) = E[es̄(−a(k−1g))
].

n empirical characteristic function φ̂x1,...,xn : a∗
→ C, defined by

φ̂g1H,...,gnH(s, kM) =
1
n

n∑
i=1

es̄(−a(k−1gi)). (6)

estimates φX based on some observed points g1H, . . . , gnH sampled from a random quantity on X. This function needs to
be dampened by a kernel before taking H−1. A G-kernel K on X is a unimodal left-H-invariant L2-function K on X which
integrates to 1.

A non-density example is an analogue Ksinc of the sinc kernel defined by

K̂sinc(s, b) ∝

{
1 |s| < 1,

0 |s| > 1.

5
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f

Fig. 1. Sampling 300 points from a Gaussian fζ on H2 , characterized by H[fζ ] = 2πes(s−2ζ ) , with parameter ζ = 1 (left) and ζ = 2 (right). Sampling is
implemented via Monte Carlo integration. The top row illustrates the covariates in H2 . The bottom row illustrates the associated geopolar magnitudes
of the covariates.

A density example is a Gaussian KGauss defined by

K̂Gauss(s, b) ∝ es(s−2ζ ),

for each choice of real parameter ζ , so named as it is a H-invariant solution to the heat equation (Fig. 1).
A G-kernel on X is (β, γ )-smooth if there exist C2, C3 > 0 such that

C2e
−

|s|β
γ ⩽ |HK (s, b)| ⩽ C3e

−
|s|β
γ .

or all s = ρX + iλ and b ∈ B. Examples include the previous two G-kernels.
For each G-kernel K on X and a bandwidth parameter h > 0, define Kh by

(HKh)(λ, b) = (HK )(hλ, b).

The G-kernel density estimator f (h)x1,...,xn : X → R is

f̂ (h)x1,...,xn = H−1
[
φ̂x1,...,xnH[Kh]

]
,

for each choice of G-kernel K , bandwidth h > 0, and x , . . . , x ∈ X.
1 n

6
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.5. Main theorem

A proof of the following main result can be found in Section 4.

heorem 1. For density fX ∈ Fα(Q ) and (β, γ )-smooth kernel K on X,

E∥f (h)X1,...,Xn
− fX∥2 ⩽ C1Qρ2α

X h2α
+ K1QT−2α

+ K2n−1e−2(hρX)β/γ T dimX, X1, . . . , Xn ∼iid fX

where C1, K1, K2 > 0 are constants not dependent on α,Q , n, for each choice of T > 0.

By choosing a smooth enough kernel K and optimal bandwidth h, we obtain the following upper bound.

Corollary 1. For density fX ∈ Fα(Q ) and (β, γ )-smooth kernel K on X,

E∥f (h)X1,...,Xn
− fX∥2 ⩽ Cn−2α/(2α+dimX), X1, . . . , Xn ∼iid fX ,

for some constant C > 0 not dependent on α,Q , n and h ∈ O(n−1/(2α+dimX)).

3. Implementation

For X = H2 and H the Gaussian with ζ = 1,

f (h)Z1,...,Zn
(z) =

n∑
i=1

∫
+∞

−∞

∫ 2π

0
Im(kθ (Zi))

1
2 −iλe−( h

2
4 +h2λ2)(Im(kθ (z)))

1
2 +iλ dµ,

where dµ =
1

8π2n
(λ tanh(πλ)) dθ dλ and kθ denotes the rotation matrix associated to the angle θ ∈ [0, 2π ). This

ouble integral, computationally cumbersome, is currently the simplest form known for expressing the KDE — the usual
implifications that allow us to regard a KDE as a convolution of a kernel with an average of Dirac point-masses do
ot work for general X. We leave for future work the task of optimizing the numerical approximation of the KDE,
ikely using analogues of discrete Fourier coefficients to construct discrete optimizations of the inverse Helgason–Fourier
ransform [12].

For the present paper, we simulate 1000 covariates from a Gaussian fζ with dispersion parameter ζ = 1 on H2 and
umerically compare KDEs defined on the first n = 100, 200, . . . , 1000 covariates with one another and with the true

density. Every SO2-invariant density is determined by its marginal on geopolar magnitudes. Given that f is SO2-invariant,
we simplify our computational task by only comparing the associated marginals on geopolar magnitudes. The associated
marginal for fζ is

2π fζ (e−r i) = 2π (4πζ )−3/2
√
2e−ζ/4

∫
∞

r

be−b2/(4ζ )

√
cosh(b) − cosh(r)

db.

The associated marginal for the KDE f̂ hX1,...,Xn is given by

f̂ hX1,...,Xn (e
−r i) =

n∑
i=1

∫
+∞

−∞

(ImZi)
1
2 −iλe−( 14 +h2λ2)P−1/2+iλ(cosh r) dµ.

here dµ =
1

8π2n
(λ tanh(πλ)) dθ dλ and Pa(c) is the Legendre function defined by the integral

Pa(c) =
1
2π

∫ 2π

0
(c + cos θ

√
c2 − 1)a dθ.

Bandwidth selection is made by the rule-of-thumb

h = n−α/(α+dimX)

instead of a data-driven criterion like cross-validation, due to the computational burden of the formula for the KDE. An
empirical calculation shows that the rule-of-thumb bandwidth closely tracks the ISE minimizer

h∗
= argmin h∥f − f̂ hX1,...,Xn∥2.

We plot some KDEs at n = 300, 500, 700 against the marginal of the true density fζ as functions on H2 (Fig. 2) and as
ssociated Helgason–Fourier transforms on R × SO2 (Fig. 2). We then compare the rates at which the integrated square
rrors for the marginals of the KDEs and a Euclidean KDE on sample geopolar magnitudes decrease. Our bandwidth-
election criterion for the Euclidean KDE is Silverman’s rule-of-thumb. We plot the Integrated Squared Error (ISE) for the
arginal of the KDE and the Euclidean KDE on the space of geopolar magnitudes (Fig. 3).
7
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Fig. 2. Comparing KDEs. The true density of a Gaussian on H2 with dispersion parameter ζ = 1 is compared with KDEs, whose bandwidths are
chosen by the rule-of-thumb derived in the proof of the minimax rate. Illustrated above are true and estimated densities with respect to both
Lebesgue measure (left) and the measure induced from the volume measure (right), on geopolar magnitudes conditioned on geopolar angles being
0. The densities on the right are used to calculate risk, which can be seen to be decreasing in the number of sample points.

Fig. 3. Classical versus Non-classical KDEs. The integrated squared error (ISE) with respect to the volume measure on H2 is computed for a KDE on
2 (black) versus a Euclidean KDE (red) for n = 300, 500, 700 (x-axis) and normalized so that the ISEs for n = 300 are both 1. (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)

. Proofs

We use the mean integrated squared error to measure the performance of our generalized estimator. As previously
oted, proofs here adapt techniques developed in [6]. We break the mean integrated squared error into two parts, variance
nd squared bias, and bound each part separately. Throughout, let s denote ρX + iλ, T denote a real number, and τ denote
he spectral measure |c(λ)|−2dλdb.

roof of Main Theorem. Let V = E
f (n,h)X − E

[
f (n,h)X

]2
. To obtain the bound on the variance V , note that for each T ,

V = E
∫
X

⏐⏐⏐f (n,h)X − E
[
f (n,h)X

]⏐⏐⏐2 dx = w−1
X E

∫
a∗

∫
B

⏐⏐⏐H [
f (n,h)X

]
− E

[
Hf (n,h)X

]⏐⏐⏐2 dτ
= w−1

X E
∫
a∗

∫
B

⏐⏐⏐φ̂X1,...,XnHKh − HfXHKh

⏐⏐⏐2 dτ = w−1
X E

∫
a∗

∫
B
|HKh|

2
⏐⏐⏐φ̂X1,...,Xn − HfX

⏐⏐⏐2 dτ
= w−1

X

∫
a∗

∫
B
|HKh|

2 E
[
|φ̂X1,...,Xn |

2
+ |HfX |2 − 2|φ̂||HfX |

]
dτ
8
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f

P

S

o

5

s
p
s
c

Let I = E
[
|φ̂X1,...,Xn |

2
+ |HfX |2 − 2|φ̂||HfX |

]
. Observe:

I =

[
|HfX |2 + n−1 (⏐⏐E[e2s̄(a(X,b))]

⏐⏐ − |HfX |2
)
+ |HfX |2 − 2HfXE[φ̂]

]
⩽

[
|HfX |2 + n−1 (⏐⏐E[e2ρX(a(X,b))]

⏐⏐ − |HfX |2
)
+ |HfX |2 − 2HfXE[φ̂]

]
=

[
2|HfX |2 + n−1 (

|HfX (2ρX, b)| − |HfX |2
)
− 2|HfX |2

]
= n−1 (

|HfX (2ρX, b)| − |HfX |2
)

⩽ n−1
|HfX (2ρX, b)|.

It then follows that

V ⩽ n−1w−1
X

∫
a∗

∫
B
|HKh|

2
|HfX (2ρX, b)| dτ

⩽ n−1w−1
X

(∫
a∗

|HKh|
2
|c(λ)|−2 dλ

)(∫
B
|HfX (2ρX, b)| db

)
.

The last term is an element inside

O
(
1
n

(∫
|λ|<T

|HKh|
2
|c(λ)|−2 dλ+

∫
|λ|>T

|HKh|
2
|c(λ)|−2 dλ

))
,

therefore an element inside

O
(
1
n

(
e−2(hρX)β/γ (1 + T )dim n T dim a

+

∫
|λ|>T
e−2hβ |λ|β/γ (1 + |λ|)dim n dλ

))
,

and hence an element inside

O
(
1
n
e−2(hρX)β/γ T dimX

)
.

Let B =

Ef (h)X1,...,Xn
− fX

. To obtain the bound on the squared bias B2, note that for each T ,

B2
=

∫
X

⏐⏐⏐Ef (h)X1,...,Xn
− fX

⏐⏐⏐2 dx = w−1
X

∫
a∗

∫
B

⏐⏐⏐EHf (h)X1,...,Xn
− HfX

⏐⏐⏐2 dτ = w−1
X

∫
a∗

∫
B
|HfXHKh − HfX |2 dτ

=w−1
X

∫
a∗

∫
B
|HfX |2 |HKh − 1|2 dτ = w−1

X

∫
a∗

∫
B
s(s − 2ρX)

−α
s(s − 2ρX)

α
|HfX |2 |HKh − 1|2 dτ

⩽w−1
X

∫
|λ′|<hT

∫
B
h2α−1(−(λ′)2 − ρ2

X)
−α

|HK − 1|2 dτ ′
+ O

(
sup
|λ|>T

|s|−2α
|HKh − 1|2

)
⊂O

(
C1h2α

+ K1T−2α)
or constants C1, K1 > 0, where λ′

= hλ and τ ′
= hτ above.

roof of the Corollary. By Theorem 1, for each T > 0

E∥f (n,h)X − fX∥2 ⩽ C1h2α
+ K1T−2α

+ K2n−1e−2(hρX)β/γ T dimX.

etting T−2α
∝ n−1e−2(hρX)β/γ T dimX, we obtain

T ∝ n1/(2α+dimX).

The upper bound converges at the fastest possible rate when

h2α
∝ T−2α

∝ n−2α/(2α+dimX),

r equivalently, when h ∝ n−α/(α+dimX). Thus

E∥f (n,h)X − fX∥2
∈ O(n−2α/(2α+dimX)).

. Conclusion

Until now, kernel density estimation in the non-compact setting has required either that one restricts to Euclidean
pace, requires that the densities have compact support, or requires that one specifies a kernel-like function for each
oint in a complete Riemannian manifold. We have introduced a new density estimator on a large class of non-compact
ymmetric spaces, sidestepping these various restrictions, and have proven an upper bound for the rate of convergence,
onjecturally a minimax rate, identical to the minimax rate of convergence for a Euclidean kernel density estimator.
9
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W
i
t

A

a
a

R

e then specialized our generalized kernel density estimator for the hyperboloid, motivated by applications to network
nference. Future work will explore adaptivity, computational optimizations, and applications to symmetric spaces other
han the hyperboloid.
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