期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:166
Nonparametric density estimation for spatial data with wavelets
Article
Krebs, Johannes T. N.1 
[1] Univ Calif Davis, Dept Stat, One Shields Ave, Davis, CA 95616 USA
关键词: Besov spaces;    Density estimation;    Hard thresholding;    Rate of convergence;    Spatial lattice processes;    Strong spatial mixing;    Wavelets;   
DOI  :  10.1016/j.jmva.2018.03.013
来源: Elsevier
PDF
【 摘 要 】

Nonparametric density estimators are studied for d-dimensional, strongly spatial mixing data which are defined on a general N-dimensional lattice structure. We consider linear and nonlinear hard thresholded wavelet estimators derived from a d-dimensional multi resolution analysis. We give sufficient criteria for the consistency of these estimators and derive rates of convergence in L-P' for p' is an element of[1,infinity). For this reason, we study density functions which are elements of a d-dimensional Besov space B-pq(s)(R-d). We also verify the analytic correctness of our results in numerical simulations. (C) 2018 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2018_03_013.pdf 722KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:0次