期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:133
Adaptive estimation of an additive regression function from weakly dependent data
Article
Chesneau, Christophe1  Fadili, Jalal2  Maillot, Bertrand1 
[1] Univ Caen, LMNO, CNRS, F-14032 Caen, France
[2] Univ Caen, GREYC, CNRS, ENSICAEN, F-14032 Caen, France
关键词: Additive regression;    Dependent data;    Adaptivity;    Wavelets;    Hard thresholding;   
DOI  :  10.1016/j.jmva.2014.09.005
来源: Elsevier
PDF
【 摘 要 】

A d-dimensional nonparametric additive regression model with dependent observations is considered. Using the marginal integration technique and wavelets methodology, we develop a new adaptive estimator for a component of the additive regression function. Its asymptotic properties are investigated via the minimax approach under the L-2 risk over Besov balls. We prove that it attains a sharp rate of convergence which turns to be the one obtained in the i.i.d. case for the standard univariate regression estimation problem. (C) 2014 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2014_09_005.pdf 868KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:1次