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1. Introduction
1.1. Problem statement

Let d be a positive integer, (V;, X;)icz be aR x [0, 1]%-valued strictly stationary process on a probability space (£2, 4, P)
and p be a given real measurable function. The unknown regression function associated to (Y;, X;)icz and p is defined by
gx) =E(Y)X=x), Xx=(x,...,x) € [0, 1]".

In the additive regression model, the function g is considered to have an additive structure, i.e. there exist d unknown real
measurable functions g1, .. ., g5 and an unknown real number p such that

d
g0 =p+ ) g (1.1)

=1
Forany ¢ € {1, ..., d}, our goal is to estimate g, from n observations (Y1, X1), ..., (Yy, Xp) of (Y, X))icz.

1.2. Overview of previous work

When (Y}, Xj)icz is a i.i.d. process, this additive regression model becomes the standard one. In such a case, Stone in a
series of papers [34-36] proved that g can be estimated with the same rate of estimation error as in the one-dimensional case.
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The estimation of the component g, has been investigated in several papers via various methods (kernel, splines, wavelets,
etc.). See, e.g., [4,21,23,29,30,1,2,33,40,32,17].

In some applications, as dynamic economic systems and financial times series, the i.i.d. assumption on the observations
is too stringent (see, e.g., [19,38]). For this reason, some authors have explored the estimation of g, in the dependent case.
When (Y;, Xj)icz is a strongly mixing process, this problem has been addressed by [5,11], and results for continuous time
processes under a strong mixing condition have been obtained by [12,13]. In particular, they have developed non-adaptive
kernel estimators for g, and studied its asymptotic properties.

1.3. Contributions

To the best of our knowledge, adaptive estimation of g, for dependent processes has been addressed only by [18]. The
lack of results for adaptive estimation in this context motivates this work. To reach our goal, as in [40], we combine the
marginal integration technique introduced by [28] with wavelet methods. We capitalize on wavelets to construct an adaptive
thresholding estimator and show that it attains sharp rates of convergence under mild assumptions on the smoothness of
the unknown function. By adaptive, it is meant that the parameters of the estimator do not depend on the parameter(s) of
the dependent process nor on those of the smoothness class of the function. In particular, this leads to a simple estimator.

More precisely, our wavelet estimator is based on term-by-term hard thresholding. The idea of this estimator is simple:
(i) we estimate the unknown wavelet coefficients of g, based on the observations; (ii) then we select the greatest ones
and ignore the others; (iii) and finally we reconstruct the function estimate from the chosen wavelet coefficients on the
considered wavelet basis. Adopting the minimax point of view under the L, risk, we prove that our adaptive estimator
attains a sharp rate of convergence over Besov balls which capture a variety of smoothness features in a function including
spatially inhomogeneous behavior. The attained rate corresponds to the optimal one in the i.i.d. case for the univariate
regression estimation problem (up to an extra logarithmic term).

1.4. Paper organization

The rest of the paper is organized as follows. Section 2 presents our assumptions on the model. In Section 3, we describe
wavelet bases on [0, 1], Besov balls and tensor product wavelet bases on [0, 1]¢. Our wavelet hard thresholding estimator is
detailed in Section 4. Its rate of convergence under the I, risk over Besov balls is established in Section 5. A comprehensive
simulation study is reported and discussed in Section 6. The proofs are detailed in Section 7.

2. Notations and assumptions

In this work, we assume the following on our model:
Assumptions on the variables.

e Foranyie {1,...,n},wesetX; = (Xq, ..., Xqi). We suppose that
- foranyie {1,...,n}, Xy, ..., Xq;are identically distributed with the common distribution U([0, 1]),
- Xy, ..., X, are identically distributed with the common known density f.
e We suppose that the following identifiability condition is satisfied: forany £ € {1, ...,d}andi € {1, ..., n}, we have
E(ge(Xe,1)) = 0. (2.1)

Strongly mixing assumption. Throughout this work, we use the strong mixing dependence structure on (Y;, X;)icz. For any
m € Z, we define the mth strongly mixing coefficient of (Y;, X;)icz by

O = sup IP(AN B) — P(A)P(B)|, (2.2)
ABeF VX P

where 510;3’% is the o-algebra generated by ..., (Y_1,X_1), (Yo, Xo) and ?,,Sf’c;éo is the o-algebra generated by

Yo, Xim)s Vi1, Xin1), -
We suppose that there exist two constants y > 0 and v > 0 such that, for any integer m > 1,

oy < y exp(—vm). (2.3)
This kind of dependence is reasonably weak. Further details on strongly mixing dependence can be found in [3,39,16,
27,6].
Boundedness assumptions.
e We suppose that p € L;(R) N Ly (R), i.e. there exist constants C; > 0 and C; > 0 (supposed known) such that

/ loWldy < Cq, (24)
and suplp(y)| < G. (2.5)

yeR
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e We suppose that there exists a known constant ¢c; > 0 such that

inf f(x) > c;. (2.6)
xe[0,1]4

e Foranym € {1,...,n}, let fiy, x.vm.x,) D€ the density of (Yo, Xo, Ym, Xm), fiv,,x,) the density of (Yo, Xo) and, for any
(yv xv y*s x*) € ]R X [01 1]d X R X [O, ]]dv
hn (¥, X, Vi, Xi) = fivg X0, Yo Xe) s X, Vi, X)) — fivg.x0) s X)f(vp,x0) Vs> Xse)- (2.7)

We suppose that there exists a known constant C3 > 0 such that

sup sup [hm (V. X, Y4, Xo)| < Cs. (2.8)

me{l,....n} (y X,y4 . X ) €R x[0,1]4 xRx [0,1]4

Such boundedness assumptions are standard for the estimation of g, from a strongly mixing process. The most common
example where this assumption holds is when p(y) = y1;jy;<m), where M denotes a positive constant. This corresponds to
the nonparametric regression model Y = g(X) + & with E(¢) = 0, provided that ¢ and g are bounded from above. This is
exactly the setting considered in the simulations of Section 6. See, e.g., [12,13] or, for £ = d = 1, [25,31].

3. Wavelets and Besov balls

This section presents basics on wavelets and the sequential definitions of the Besov balls.

3.1. Wavelet bases on [0, 1]

Let R be a positive integer. We consider an orthonormal wavelet basis generated by dilations and translations of the
scaling and wavelet functions ¢ and ¥ from the Daubechies family db.. In particular, ¢ and ¥ have compact supports and
unit Ly-norm, and ¥ has R vanishing moments, i.e. foranyr € {0,...,R — 1}, fx’w(x)dx =0.

Define the scaled and translated version of ¢ and ¢

G0 =22p@x— k), Y0 =22y @x k).
Then, with an appropriate treatment at the boundaries, there exists an integer t satisfying 2° > 2R such that, for any integer
Jjs = t, the collection

{#i.k()s k€0, 2% =1 Yu(); JEN—{0, ... ju — 1}, k€ {0,.... 2 = 1}},

is an orthonormal basis of L, ([0, 1]) = {h : [0, 1] = R; fol h?(x)dx < oo}. See [9,24].
Consequently, for any integer j, > t,any h € 1,([0, 1]) can be expanded into a wavelet series as

2dx 1 0o 2-1
he) = ) e, 1,k + Y D Budiu®, xe€ (0,1,
k=0 j=ix k=0
where
1 1
o = f hOG(dx, B = / BV () dx. (3.1)
0 0

3.2. Besov balls

As is traditional in the wavelet estimation literature, we will investigate the performance of our estimator by assuming
that the unknown function to be estimated belongs to a Besov ball. The Besov norm for a function can be related to a sequence
space norm on its wavelet coefficients. More precisely, let M > 0,s € (0,R),p > 1and g > 1. A function h in L, ([0, 1])
belongs to the Besov ball B; . (M) of radius M if, and only if, there exists a constant M* > 0 (depending on M) such that the
associated wavelet coefficients (3.1) satisfy

. 1/p\ 4 1/q
2J-1

o0
Z 2i(s+1/2=1/p) Z|13].’k|p < M*.
k=0

j=t

In this expression, s is a smoothness parameter and p and q are norm parameters. Besov spaces include many traditional
smoothness spaces. For particular choices of s, p and g, Besov balls contain the standard Hoélder and Sobolev balls. See [26].
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3.3. Wavelet tensor product bases on [0, 1]¢

For the purpose of this paper, we will use compactly supported tensor product wavelet bases on [0, 1]¢ based on the
Daubechies family. Let us briefly recall their construction. Forany X = (x1, ..., x4) € [0, 1]%, we construct a scaling function

d
ox) =[]ox),
v=1
and 2¢ — 1 wavelet functions

d
1ﬁ(Xu)l_[q)(xv) whenu € {1,...,d},

W, (X) = o
[[ve [Jox) whenueid+1,....2°—1}
vEAY veAy
where (Ay)ye(g+1,....2¢—1) forms the set of all non void subsets of {1, ..., d} of cardinality greater than or equal to 2.
For any integer j and any k = (kq, ..., kg), define the translated and dilated versions of @ and ¥, as

D1 (X) = 292D (Dxy — ky, ..., Pxq — ka),
Wu(X) = 2920, (2% — ky, ..., 2xg — kg), foranyu e {1,...,2% —1}.

LetD; = {0, ..., 2/ — 1}4. Then, with an appropriate treatment at the boundaries, there exists an integer t such that the
collection

{®T,kv k € D‘r, (lpj,k,u)ue{l

forms an orthonormal basis of L, ([0, 1]9) = {h : [0, 1]¢ — R; o1y h?(x)dx < oo).
For any integer j, such thatj, > 7, a function h € L, ([0, 1]%) can be expanded into a wavelet series as

2a_l},jeN—{O,...,r—l}, k € Dj}

201
hO) = Y k@i k) + Y DY BiraPiau®), x€[0,11%
kEDj* u=1 j=jy kEDj
where
o = / B0k (0d%,  Braca = / h(0W) 10 () dx. (3.2)
[0,114 {0,114

4. The estimator
4.1. Wavelet coefficients estimator

The following proposition provides a wavelet decomposition of g, based on the “marginal integration” method
(introduced by [28]) and a tensor product wavelet basis on [0, 1]%.

Proposition 4.1. Suppose that (2.1) holds. Then, for any j, > tand £ € {1, ..., d}, we can write
2% 1 0o 2-1
ge(x) = Z @, k.0 Pj, k(X) + Z ij,k,e%',k(x) —n, x€[0,1],
k=1 J=ix k=1
where
Gkt = By kgt = 2_j*(d_l)/2f g(x) Z Pj, k(X)dX, (4.1)
[O’]]d k,[ED*
Jx
bj,k‘g = bj,lqg,@ = 2_j(d_l)/2/ g(X) Z l[/jyk_’g(X)dX, (4'2)
0,14 k_¢eD;

andk_y = (ky, ..., ke—1, keq1, ... kg) and DF = {0, ..., 20 — 1)1,
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Remark 4.1. Due to the definitions of g and properties of ¥; ¢, b; k¢ is nothing but the wavelet coefficient of g, i.e.
1
bjke = / e )Y (X)dx = Bjr. (4.3)
0

Proposition 4.1 suggests that a first step to estimate g, should consist in estimating the unknown coefficients a; x ; (4.1)
and b; i ¢ (4.2). To this end, we propose the following estimators of the coefficients

- - -2 1y~ (YD)
Giiop =Ty = 27023 xl D DXy (4.4)
n = fX) k_oeD}
and
~ =~ i@y 1 v~ oY)
Bjsr = bjj.e =270 V2- 3" xl D X (4.5)
n = fX) k_¢eD?

These estimators enjoy powerful statistical properties. Some of them are collected in the following propositions.

Proposition 4.2 (Unbiasedness). Suppose that (2.1) holds. Foranyj > t,£ € {1,...,d}and k € {0,...,2 — 1},/(1\1‘,1”3 and

o~

bj k¢ in (4.4) and (4.5) are unbiased estimators of a; x ¢ and bj y , respectively.

The key ingredient for the proof of Proposition 4.2 is Proposition 4.1.

Proposition 4.3 (Moment Inequality I). Suppose that the assumptions of Section 2 hold. Let j > T such that 2 <n ke
{0,...,2 —1}, £ €{1,...,d}. Then there exists a constant C4 > 0 such that

1 ~ 1
E(@ke — ajre)?) < C4H’ E ((bjke — bjke)?) < C4E'

The proof of Proposition 4.3 is based on several covariance inequalities and the Davydov inequality for strongly mixing
processes (see [10]).

Remark 4.2. In the proof of Proposition 4.3, for the condition on «;,, we only need to have the existence of two constants
Cs > 0and q € (0, 1) such that Z:’nﬂ miay, < Cs < oo. This latter inequality is obviously satisfied by (2.3).

Proposition 4.4 (Moment Inequality II). Under the same assumptions of Proposition 4.3, there exists a constant C; > 0 such
that

~ 2i
E ((bjke — bjxe)?) < Cs;-

Proposition 4.5 (Concentration Inequality). Suppose that the assumptions of Section 2 hold. Let j > t such that Inn < 2 <
n/(nn)3 ke {0,...,22 =1}, £ € {1,...,d} and A, = (Inn/n)'/2 Then there exist two constants C; > 0 and k > 0 such
that

~ 1
P (Ibje — bkl = khn/2) < C7E'
The proof of Proposition 4.3 is based on a Bernstein like inequality for strongly mixing processes (see [22]).

4.2. Hard thresholding estimator

We now turn to the estimator of g, from ﬁ},u and ’l;j,k,g as introduced in (4.4) and (4.5). Towards this goal, we will only
keep the significant wavelet coefficients that are above a certain threshold according to the hard thresholding rule, and then
reconstruct from these coefficients. In a compact form, this reads

201 j1 21
800 = Tk + DD bkl pimn) Vi — 7, (46)
k=0 j=jo k=0
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where jj is the resolution level satisfying 2o = [Inn],

PO R
m=— p. (47)

i=1
j1 is the resolution level satisfying 271 = [n/(Inn)3], 1 is the indicator function, « is a large enough constant (the one in

Proposition 4.5) and

Inn
An =,/ —.
n

The definitions of the parameters in g, are based on theoretical considerations (see the proof of Theorem 5.1). Let us mention
that the threshold XA, corresponds to the well-known universal one presented in [15] for the density estimation problem
in a i.i.d. setting. Note that, due to the assumptions on the model, our wavelet hard thresholding estimator (4.6) is simpler
than the one of [40]. Wavelet hard thresholding estimators for g (1.1) defined with only one component, i.e., £ = d = 1in
a o¢-mixing dependence setting can be found in, e.g., [31,7,8].

5. Minimax upper-bound result
Theorem 5.1 investigates the minimax rates of convergence attained by g, over Besov balls under the L, risk.

Theorem 5.1. Let £ € {1, ..., d}. Suppose that the assumptions of Section 2 hold. Let g, be the estimator given in (4.6). Suppose
that gy € Bz’q(M) withq > 1,{p > 2ands € (0,R)} or {p € [1,2) ands € (1/p, R)}. Then there exists a constant Cg > 0
such that

1 1 2s/(2s+1)
E(/ @(x)—g@(xnzdx) 5@("") .
0

n

The proof of Theorem 5.1 is based on a suitable decomposition of the L, risk and the statistical properties of (4.4) and (4.5)
summarized in Propositions 4.2-4.5.

The rate (Inn/n)?/@*D is up to an extra logarithmic term, known to be the optimal one for the standard one-
dimensional regression model with uniform random design in the i.i.d. case. See, e.g., [20,37]. In this setting, it is also the
rate of convergence attained by the one-dimensional wavelet hard thresholding estimator. See, e.g., [ 14,20].

Theorem 5.1 provides an “adaptive contribution” to the results of [5,11-13]. Furthermore, if we confine ourselves to the
i.i.d. case, we recover a similar result to [40, Theorem 3] but without the condition s > max(d/2, d/p). The price to pay
is more restrictive assumptions on the model (p is bounded from above, the density of X is known, etc.). Additionally, our
estimator has a more straightforward and friendly implementation than the one in [40].

6. Simulation results

In this section, a simulation study is conducted to illustrate the numerical performances of the above estimation proce-
dure. Six test functions (“HeaviSine”, “Parabolas’, “Blocks”, “Bumps”, “Wave” and “Doppler”) representing different degrees
of smoothness were considered. These functions are displayed in Fig. 1.

In the following, we will take d = 2. To generate n observations of the process (Y;, X;), we first consider the first-order
autoregressive AR(1) model

Zoi = peZei-1+ e, eei~iidNMN(0,1), p€(0,1), i=2,...,n £e{l,2}

Vi=uVier+e6,  &~iia N0, 1), pne(©1),i=2...,n,
with Z,; ~ W~ (0, 1) (resp. V; ~ N (0, 1)) and independent of e, ; (resp. of ¢;) for i > 2, and Z;; and V; are mutually
independent. Then, foranyi > 1and £ € {1, 2} we take

Xei = Fy (Zz,i; 0, 1_1pg>

Wi = 20w (Fy (Vi 0. 112 ) = Xii— (14 1)/2), 0w > 0,720
Yi = g1(X1,) + &(X2,) + Wi,

where Fy (-; 0, 02) is the zero-mean normal distribution with variance o-2. The functions g; and g, are chosen among the
test functions of Fig. 1. Observe that when 7 > 0, the processes Y; and X; are not mutually independent.
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Fig. 1. Original test functions.

83

First, the process (V;, Z;) is strictly stationary and strongly mixing. It follows from continuity of the distribution function
that the stationarity and the mixing assumptions are met on the process (Y;, X;); see e.g. [16]. Second, it is immediate that
forany i, Xy ; ~ U([0, 1]) and so is X5 ; as required. In turn, this entails that the boundedness assumptions (2.6)-(2.8) hold.
Third, as W; is zero-mean, we obviously have E(Y;|X; = Xi) = g1(X1,)) + &(X2,1), i.e. p(Y) = Y. In addition, since the
noise process W;, as well as the test functions considered here are all bounded from above,'the boundedness assumptions
(2.4)-(2.5) are in force.

In the following simulations, we set p; = 0.5, p, = 0.9, u = 0.8, T = 1/10, and the scale parameter oy = 0.28, i.e. the
signal-to-noise ratiois 5. The Daubechies wavelet db, (i.e. R = 2) was used. The constant « in the hard thresholding estimator

1 Forr = 0, Wy, ..., W, are identically distributed with the common distribution U ([—ow, ow]). For T > 0, they are identically distributed according

to the triangular distribution with support in [—ow (1 + t), ow (1 + 7)].
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Fig. 2. Original functions g, (dashed) and their estimates g, (solid), with £ = 1 (left) and £ = 2 (right) for different pairs of test functions, and two samples
sizes (n = 256° and n = 2048?).

was set to y oy, where y was chosen in [0.25, 2.5] where it was observed empirically to lead to the best performance. The
numerical performance of the estimator was measured using the Mean Squared Error (MSE), i.e.

MSE = % ;(g(xi) —2(x))%,

where g is either of g; or g, g its estimate, and X1, .. ., x, € [0, 1] are the corresponding observed sampling points.

Fig. 2 displays the results of the estimator for different pairs of tested functions with two numbers of samples n. Vi-
sual inspection shows the good performance of our estimator which is able to adaptively recover a large class of functions
spanning a wide range of spatial inhomogeneities. As expected, the estimation quality increases with growing n. This vi-
sual impression is confirmed quantitatively by Figs. 3 and 4. In these figures, the above simulation was repeated 100 times
and the obtained MSE was averaged across these replications. Fig. 3 depicts the boxplots of the MSE versus the function.
Each plot corresponds to a fixed number of samples increasing from top to bottom. For a given number of samples, the
average MSE and its variability is comparable for all functions, though they are slightly higher for the functions Heavi-
Sine and Wave. As observed visually in Fig. 2, the average MSE decreases with n as reported in Fig. 4. Moreover, the aver-
age MSE shows a linear decreasing behavior in log-log scale, which is clearly consistent with our theoretical convergence
result.
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Fig. 3. Boxplots of the average MSE for each tested function with the same pairs as those of Fig. 2. Each plot corresponds to a number of samples
ne{2'2,2" ..., 2%} increasingly from top to bottom.
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Fig. 4. Average MSE over 100 replications as a function of the number of samples.
7. Proofs

In this section, the quantity C denotes any constant that does not depend on j, k and n. Its value may change from one
term to another and may depend on ¢ or .

7.1. Technical results on wavelets

Proof of Proposition 4.1. Because of (2.5), we have g € L,([0, 1]%). For anyj, > t, we can expand g on our wavelet-tensor
product basis as

291 o0

g0 =Y o aPik®+ > Y Y BraPixu®. xe€[0,1]° (7.1)

kEDj* u=1 j=jx kEDj
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where

Qj, k =/ g(X)P;, (X)dx, Bixu =/
[0,11¢

. g(x) Y ku (x)dx.
[0,1]

Moreover, using the “marginal integration” method based on (2.1), we can write

d

o= [ o0[[dn - xel0,

[0, 179! v=1
v#£L

Since fol ¢ x(x)dx = 27/ and fol Vix(x)dx = 0, observe that

d
/ &), 10 | Jdxy = 2742 4 (x0)
[0’1][171 v=1

IJ;K
and
d .
270Dy (k) ifu=1¢
. — ke >
/[0 11 Yiacu®) H dxy {0 otherwise.
, V=
v#£L

Therefore, putting (7.1) in (7.2) and writing x = x;, we obtain

[o¢]
g =Y 270 iy, 0+ D 27 B, (0 —

keD;, J=x keD;

Or, equivalently,

2% 1 0o V-1
2 =Y G a0+ Y Y b — p,
k=1 j=jx k=1
where
Akt = Qjkp.t = 27j(d71)/2/ g Y Budx
oy
and

bjk.e = bjk.e = ij(dfwz/‘ g2 Y Wuedx.

(0.1¢ k_eD}
Proposition 4.1 is proved. H

Proposition 7.1. Forany £ € {1,...,d}, j>tandk =k, € {0,...,2 — 1}, set
Y= Y e, h2m= Y ie®. xelo 1]

k,{ED}k ](,KED;K
Then there exists a constant C > 0 such that, for any a € {1, 2},
sup [hY ()| < €27, / Ih9 (x)ldx < C279/221¢-/2
xe[0,1]¢ 0,134

and

/ d(h;,ak) (%))%dx = 2@,
[0,1]

Proof. e Since sup,cpo 17 |¢jx(X)| < C2/? and sup,( 1, > 2 V()| < C2//2, we obtain

. d—1
21
1 ‘
sup [} (®)| = (sup [ge(]) | sup Y Il <2
xe[0,11¢ x€[0,1] xe[0,1] 159

(7.2)
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o Using J} ¢ «(x)|dx = C27/%, we obtain

1 2] 1
.[0 e |h1'(’1k)(x)|dx (/(; |¢j,k(X)|dx> / |¢j k(X)|dX

— Cpil2id-1/2.

d—1

IA

2
o Since, for any (ti)ken;, f[O.l]d (Zkenj ukq)j,k(x)) dx = Zkeoj uz, we obtain

2

/[O 1]d(hf,lk)(x))zdx:/[0 » Z ®j(x) | dx =21V,

k_ ZED*
Proceeding in a similar fashion, using sup,1; [¥jx(X)| < C2/2, fol [Yjk(®)|dx = €277/ and, for any (ui)kep;,

2
Joap (ZkeDj lell/j’k,[(x)> X = yep, uz, we obtain the same results for h]( .

This ends the proof of Proposition 7.1. ®

7.2. Statistical properties of the coefficients estimators

Proof of Proposition 4.2. We have

jd— p(Y1)
E@ke) =27 2E : Y Pk

FXD) o
= 27 EDRE [ BE(p()X) e Y PjuXn)
f( 1) k_ eD*
i g(Xy)
_ yie-np B (X
f(xok%* i)
_ 2—j<d—1>/2f g Bk d
- ) 1(26;3* k(X)f (X)dx
_ 2_j(d—1>/2/ 2(X) Z D 1 (X)dX = aj . ¢-
(o, 13 k,(eDjf‘

Proceeding in a similar fashion, we prove that E(B\j,k,g) =bjke. W

Proof of Proposition 4.3. For the sake of simplicity, foranyi € {1, ..., n}, set
p(Yi)
Zi = D B0
FXp) Koy

Thanks to Proposition 4.2, we have

. 1 .
E (@ = Gj)’) = V@xe) = ij(dfl)nfzv (ZZ:‘) . (7.3)

An elementary covariance decomposition gives

n n v—1
v (Zz,) =nV(Z)+2) Y Cov(Z,.Z)
i=1

v=2 u=1

n

> f Cov (Z,,Zy)| -

v=2 u=1

IA

nv (Z;) + 2
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Using (2.5), (2.6) and Proposition 7.1, we have

swry) 2
E@Z?) < 2= ®; (X
A= T T | Foxo ,2)* jX)

xe[O 1]

IA

V(Zy)

2

1
c /wm D B | fodx

i
k_, EDj

2

c/ > G | dx=c2“. (7.5)
.14 \

*
,(GDJ»

It follows from the stationarity of (Y;, Xi)icz and 2 < n that

n

> Ui Cov (Z,,Zy)| =

v=2 u=1

Z(” —m)CoV (Zo, Zy)| < Ry + Ry, (7.6)

m=1

where
201 n
Ri=n) |CovZo.Zu)l, Ro=n_ |Cov(Zo.Zu)l.
m=1 m=2
It remains to bound Ry and R;.

(i) Bound for R;. Let, for any (¥, X, ¥+, X.) € R x [0, 1]¢ x R x [0, 11%, hn(y, X, ¥4, X,) be (2.7). Using (2.8), (2.4) and
Proposition 7.1, we obtain

o0 o0
|C0V(20,Zm)|=/ / / / hen (¥, X, Yss Xo)
—o0 J10,119 J -0 J[0,1]¢
p) PYs)
— Dj k(X) D 1 (X,) | dydxdy,.dx,
ey kZD ) kzd,* M
- ]
o0 o0
5/ / / / [hn (Y, X, Vo X
—o0 J[0,114 J—o00 J[0,1]d
Py W)
D; k(X) ®; (X,)| dydxdy..dx
fx) Z; ! Fx) ZD re o
2
< C< / |p<y)|dy) / > @u|dx | < c27i2iD,
- 0,14 k,(eDjf‘
Therefore
Ry < Cn27920@Dj = cp2ié=D, (7.7)

(ii) Bound for R,. By the Davydov inequality for strongly mixing processes (see [10]), for any q € (0, 1), we have
ICoV (Zo. Zm)| < 100, (E (125> 1-9))"™

sup [p(y)|
<1009 [ 25 > eum|| (E@)

inf f(x
xe[0, 1 A )"E[O 1 ficpeps

By (2.5), (2.6) and Proposition 7.1, we have

sup [p()|
yeR

2q

sup Z D (X)| < C sup Z D; 1 (X)

xel[gt;] fXx) xe[0,119 |1 (eD? xe[0,119 [jc (€Dt

< c242,
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By (7.5), we have
E(z3) < c2¥D,
Therefore
|Cov (Zo, Zn)| < C2921" Dyl

Observe that Y o>, miag = ¥4 > miexp(—cqgm) < oo. Hence

n n
Ry < (292D 3" o < cn2 @D Y " miof, < cn2 @Y. (7.8)
m=2J m=2J

Putting (7.6)-(7.8) together, we have

n v-—1
D) Cov(z,. Z)

v=2 u=1

Combining (7.3)—(7.5) and (7.9), we obtain

< 2/, (7.9)

. 1 . 1
E ((a\j,u — aj’k,g)z) < CZ’J(d’”—ZnZJ(d*” =C-.
n n

Proceeding in a similar fashion, we prove that
~ 1
E ((bjke — bjke)?) < CE'
This ends the proof of Proposition 4.3. ®

Proof of Proposition 4.4. It follows from (2.5), (2.6) and Proposition 7.1 that

n
[bj kel < zfﬂwle e 2, Y
n et lf(xl)l k_[eDJ’.k
sup [p(¥)]
< Z_j(d_n/zyflk}i sup Z lllj,k,ﬁ(x)
xel[gl,l]df(X) xel0. 11 |1 ey
< o Id=D/29id/2 _ 9i/2

Because of (2.5), we have supyc(o 1¢ 1€(X)| < C. It follows from Proposition 7.1 that

bised =270 [ jgool| 3 w0 ax
[0’]]d k_[EDj-1<
< Cz—j(d—l)/zf S w0 dx
0,114 k,gEDf
< 271@=D/29ipid/2 — cp7II?, (7.10)
Hence
Ibike — bikel < [bikel + bjxel < C272. (7.11)

It follows from (7.11) and Proposition 4.3 that
~ 4 P 5 2
E ((bjke — bixe)?) < C2E ((bjke — bjwe)®) < C;.

The proof of Proposition 4.4 is complete. H

Proof of Proposition 4.5. Let us first state a Bernstein inequality for exponentially strongly mixing process.
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Lemma 7.1 ([22]). Let (Y;)icz be a strictly stationary process with the mth strongly mixing coefficient o, (2.2). Let n be a positive
integer, h : R — C be a measurable function and, for any i € Z, U; = h(Y;). We assume that E(U;) = 0 and there exists a
constant M > 0 satisfying |U;| < M. Then, foranym € {1, ..., [n/2]} and » > 0, we have

n 2
1 An M
Pl |- E Ul >A) <4exp (— >+32—nam,
n ‘= 16(Dyy/m + AMm/3) A

We now apply this lemma by setting foranyi € {1, ..., n},

jtd—1y72 P (YD)
DR N o (X)) — by

U =2
FXp) ey

Then we can write

l n
bike—bjke=— E Ui.
n43

So

>u

where Uy, ..., U, are identically distributed, depend on (Y;, X;);cz satisfying (2.3),

e by Proposition 4.2, we have E(U;) = 0,
e using arguments similar to the bound of R; in the proof of Proposition 4.3 with ! instead of n satisfying [ < CInn and
277 < 1/1nn, we prove that

(_i ) C(i+r2 ')sc<l+l:n>sa.

(|b]l<£_b1k5| > KA /2 —]P’(

> K)\,n/Z)

Hence

Dy, = le{llnax \% (Z U,) < (Cm.

e proceeding in a similar fashion to (7.11), we obtain |U;| < C2/2,

Lemma 7.1 applied with the random variables Uy, ..., Up, A = kAn/2, Ay = (In n/n)'2, m = [ulnn] with u > 0 (chosen
later), M = C2/2,2) < n/(Inn)® and (2.3) gives

P (|b bikel = kAn/2) < C|ex C i + Mnex (—vm)
ke —bj K -C— — v
lj k€ j k01 — n = P Dm/ K)»n M kn p

-c c k*Inn N 202 ( Inm)
exp | — . nexp(—vulnn
- P 1+ «u2/2 Inn(lnn/n)'/2 (Inn/n)1/2 P

c (nchZ/(HKu) + n27uu) _

Therefore, for large enough « and u, we have

IA

P 1
P ([bjk.e — bjkel = cAn/2) < CF'
This ends the proof of Proposition 4.5. ®

7.3. Proof of Theorem 5.1

Using Proposition 4.1, we have

201 1 2-1

T =20 = Y @okr = Aok )Biok®) + D Y Bike 1 1200} — bik ) Va0
k=0 Jj=jo k=0

oo 2-1

33 bt — (@ — .

Jj=i1+1 k=0
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Using the elementary inequality: (x + y)> < 2(x*> +y?), (x,y) € R?, and the orthonormal property of the wavelet basis, we
have

1
IE(/ @) —gz(X))de) <2T+U+V+W), (7.12)
0
where
2o —1
T =E(@ — p)?), U= Z E (@j.ke — Oljo,k,l)z) ,
k=0
1 2-1 . 0o -1
V=) Y E ((bj,k,ﬂ{@,k,@em} - bf.k.z)2> Low= )y
Jj=jo k=0 j=j1+1 k=0

(i) Bound for T. We proceed as in the proof of Proposition 4.3. By (2.1), we have E(p(Y;)) = w. Thanks to the stationarity
of (Y)iez, we have

T=V{@ < V(pm)>+z Z|C0V(P(Y0) p(Ym))l.

m 1

Using (2.5), the Davydov inequality (see [10]) and (2.3), we obtain

1 1 11‘1 n 2s/(2s+1)
T<C- (1+Z<>ﬂ)5cngc(n) ) (7.13)

m=1

(ii) Bound for U. Using Proposition 4.3, we obtain

1 Inn Inn) /@D
U<C2—<C— <C|— .
- n-— n - n

(7.14)

(iii) Bound for W.Forq > 1andp > 2, we have g, € Bf,,q(M) C B . (M). Hence, by (4.3),

- 3\ 2% 2s/(25+1)
Wsc ) 2¥<c2¥<c ((lnn) ) <c (M) :
n n

J=ih+1

Forg > 1andp € [1,2), we have g, € B} (M) € B;f;o/z*]/p(M). Sinces > 1/p, wehaves +1/2 — 1/p > s/(2s + 1).
So, by (4.3),

o0
W< Z 2—2i(s+1/2=1/p) < C2~1(s+1/2=1/p)

j=i+
(In n)3 2(s+1/2—1/p) Inn 2s/(2s+1)
<C <C|— .
n n
Hence, forq > 1, {p > 2ands > 0} or {p € [1, 2) and s > 1/p}, we have
Inn 2s/(2s+1)
w<CcC () ) (7.15)
n
(iv) Bound for V. We will use arguments similar to [20, Proposition 10.3]. Observe that
V=Vi4+V,+ V34V, (7.16)
where
i1 2-1
™ 2
V] = Z ;E ((bj,k,l - bj,k,l) 1{|/Ej,k,l|2f<ln, |bj,k,l|<’0~n/2}) s
Jj=io k=
i 2-1
2
=2 Z E <(bf ke = bk 5 o1z, |bj.k,z|zmn/z}) ;
J=jo k=

12]1

= Z E (bf ke 1By el<chn. Ity Hl>zmn}>

j=jo k=
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and

i1 2-1

ZZ (;kt {Ibj k¢l <scxn, |b,~.k,z\<2xxn}>'

j=jo k=0

¢ Bounds for V; and V5. The following inclusigns hold:
{Ibjsel < kAn Ibjgel = 2khn} S {Ibjse — bjkel > khn/2},

{|b] kel > KAny bjkel < K)”n/z} {lbjk(i = bjkel > K)”n/z}
and {|bj,k,e| < Khn, |bjkel = 2chn} S {Ibjkel < 2(bjke — biel} -

So
J1 21 .
max(Vy, V3) < C Z Z ((bj,k,z - bj,k,e)z1{|Bj_k,(7bj,k,€\>mn/2}) .
j=jo k=

Applying the Cauchy—Schwarz inequality and using Propositions 4.4, 4.5 and 2/ < n, we have
E ((bj,k,K - bj,k,e)21{|Ej,k_rbj_k,z|>w\n/2}) < (E((jke — b)) (P (Ibjse — bikel > kAn/2))

<C 2 . 1 1/2<C1
- n n4 - n?

Therefore
1 1 Inn 2s5/(25+1)
max(V, Vs) = C— Zzl<c 2 <C- <C( ) )
j=io n
e Bound for V,. Using Proposition 4.3, we obtain
~ 2 1 Inn
E ((bjke — bjxe)?) < CE < CT'
Hence
J1 2-7 1
Va = C* ZZ {14 cl=0m/2}
Jj=jo k=
Let j, be the integer defmed by
) n \ 1/@s+1)
2= | () .
[ Inn
We have
Vo Vo1 + Vo,
where
Inn g2 2=
Vaa = Ci Z Z Liby s ol>e2a/2)
J=io k=
and
Inn <L 2=
Voo = C* Z Z Yy, o1=kins2} -
Jj=j2+1 k=0
We have
Inn 2s5/(2s+1)
Vo1 < C— 2 < <C|— .
neeyescii ()
Forg> landp > 2 we havegg € B, ,(M) € B; (M). So, by (4.3),
Inn j1 2—1 o 2-1 ‘
Var €5 D0 D B SC YL D A=
n; =j,+1 k=0 j=ja+1 k=0

Inn 2s5/(25+1)
<Cl|l— .
n

(7.17)

(7.18)

Forq > 1,p € [1,2) and s > 1/p, using (4.3), i olmnin/2) = ClbjkelP /M = ClBjxlP/Ah, g € B, ,(M) and

2s+1)2—-p)/2+ (s+1/2 —1/p)p = 2s, we have

lnn i1, 21 Inn @iz oo
Vap < C Z Z IB. WP <cC Z 9—i(s+1/2=1/p)p
M j=ip+1 k=0 j=ir+1

2-p)/2 2s/(2s+1)
C (1“”) 2 (H/2-1pp < (““’) .
n n
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So,forr > 1,{p > 2ands > O} or {p € [1,2) and s > 1/p}, we have

Inn 2s/(2s+1)
vV, <C (—) ) (7.19)
n

e Bound for V,;. We have
g1 21
Va = Z Z ’<s51{\bj,k</z\<2/(ln}'
Jj=jo k=0
Let j, be the integer (7.18). Then
Vy < Va1 + Vap,

where
2 2-1 i 2-1
2
Va1 = Zij,k.z1{|bj,k,u<zmn}v Va2 = Z ij kot 1oy g1 <260}
Jj=jo k=0 j=jr+1 k=0
We have
I Inn 25/(25+1)
Va1 <CY 22 = C— sz C—zf2 <cC <—) .
’ L n
J=lo Jj=Jo

Forq> landp > 2,we have g, € p,q(M) c B§ «(M). Hence, by (4.3),

oo 2-1 Inn 2s/(2s+1)
Was 303 fiscr 212‘<c( ) .

Jj=j2+1 k=
Forq > 1,p € [1,2) ands > 1/p, using (43), b, A(, <22} < Chn "Ibjkel” = Chn P IBilP, g € By (M) and
2s+1)@2—-p)/2+4+(s+1/2 —1/p)p = 2s, we have

i 21 Inn\@P2 Ji 2-1
LD 9 3T _c< ) PRI

j=j2+1 k= Jj=j2+1 k=
@-p/2 oo
<C <IL"> 3 gttt
- n
Jj=ix+1
(2—p)/2 25/(25+1)
c(nn y-iaG12-1/pp (1IN ,
- n - n
Thus, forqg > 1,{p > 2ands > 0} or {p € [1, 2) and s > 1/p}, we have
1 2s/(2s+1)
nn
Vo <C|— . (7.20)
n
It follows from (7.16), (7.17), (7.19) and (7.20) that
Inn 2s/(2s+1)
v<cCc|l— . (7.21)
n

Combining (7.12)-(7.15) and (7.21), we have, forq > 1,{p > 2ands > O} or {p € [1, 2) and s > 1/p},

2s5/(2s+1)
(/ @0 — () dx) <c (l””) .

The proof of Theorem 5.1 is complete. B
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