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A d-dimensional nonparametric additive regression model with dependent observations
is considered. Using the marginal integration technique and wavelets methodology, we
develop a new adaptive estimator for a component of the additive regression function. Its
asymptotic properties are investigated via the minimax approach under the L2 risk over
Besov balls. We prove that it attains a sharp rate of convergence which turns to be the one
obtained in the i.i.d. case for the standard univariate regression estimation problem.
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1. Introduction

1.1. Problem statement

Let d be a positive integer, (Yi,Xi)i∈Z be a R × [0, 1]d-valued strictly stationary process on a probability space (Ω,A, P)
and ρ be a given real measurable function. The unknown regression function associated to (Yi,Xi)i∈Z and ρ is defined by

g(x) = E(ρ(Y )|X = x), x = (x1, . . . , xd) ∈ [0, 1]d.

In the additive regression model, the function g is considered to have an additive structure, i.e. there exist d unknown real
measurable functions g1, . . . , gd and an unknown real number µ such that

g(x) = µ+

d
ℓ=1

gℓ(xℓ). (1.1)

For any ℓ ∈ {1, . . . , d}, our goal is to estimate gℓ from n observations (Y1,X1), . . . , (Yn,Xn) of (Yi,Xi)i∈Z.

1.2. Overview of previous work

When (Yi,Xi)i∈Z is a i.i.d. process, this additive regression model becomes the standard one. In such a case, Stone in a
series of papers [34–36] proved that g canbe estimatedwith the same rate of estimation error as in the one-dimensional case.
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The estimation of the component gℓ has been investigated in several papers via various methods (kernel, splines, wavelets,
etc.). See, e.g., [4,21,23,29,30,1,2,33,40,32,17].

In some applications, as dynamic economic systems and financial times series, the i.i.d. assumption on the observations
is too stringent (see, e.g., [19,38]). For this reason, some authors have explored the estimation of gℓ in the dependent case.
When (Yi,Xi)i∈Z is a strongly mixing process, this problem has been addressed by [5,11], and results for continuous time
processes under a strong mixing condition have been obtained by [12,13]. In particular, they have developed non-adaptive
kernel estimators for gℓ and studied its asymptotic properties.

1.3. Contributions

To the best of our knowledge, adaptive estimation of gℓ for dependent processes has been addressed only by [18]. The
lack of results for adaptive estimation in this context motivates this work. To reach our goal, as in [40], we combine the
marginal integration technique introducedby [28]withwaveletmethods.We capitalize onwavelets to construct an adaptive
thresholding estimator and show that it attains sharp rates of convergence under mild assumptions on the smoothness of
the unknown function. By adaptive, it is meant that the parameters of the estimator do not depend on the parameter(s) of
the dependent process nor on those of the smoothness class of the function. In particular, this leads to a simple estimator.

More precisely, our wavelet estimator is based on term-by-term hard thresholding. The idea of this estimator is simple:
(i) we estimate the unknown wavelet coefficients of gℓ based on the observations; (ii) then we select the greatest ones
and ignore the others; (iii) and finally we reconstruct the function estimate from the chosen wavelet coefficients on the
considered wavelet basis. Adopting the minimax point of view under the L2 risk, we prove that our adaptive estimator
attains a sharp rate of convergence over Besov balls which capture a variety of smoothness features in a function including
spatially inhomogeneous behavior. The attained rate corresponds to the optimal one in the i.i.d. case for the univariate
regression estimation problem (up to an extra logarithmic term).

1.4. Paper organization

The rest of the paper is organized as follows. Section 2 presents our assumptions on the model. In Section 3, we describe
wavelet bases on [0, 1], Besov balls and tensor product wavelet bases on [0, 1]d. Our wavelet hard thresholding estimator is
detailed in Section 4. Its rate of convergence under the L2 risk over Besov balls is established in Section 5. A comprehensive
simulation study is reported and discussed in Section 6. The proofs are detailed in Section 7.

2. Notations and assumptions

In this work, we assume the following on our model:
Assumptions on the variables.
• For any i ∈ {1, . . . , n}, we set Xi = (X1,i, . . . , Xd,i). We suppose that

– for any i ∈ {1, . . . , n}, X1,i, . . . , Xd,i are identically distributed with the common distribution U([0, 1]),
– X1, . . . ,Xn are identically distributed with the common known density f .

• We suppose that the following identifiability condition is satisfied: for any ℓ ∈ {1, . . . , d} and i ∈ {1, . . . , n}, we have

E(gℓ(Xℓ,i)) = 0. (2.1)

Strongly mixing assumption. Throughout this work, we use the strong mixing dependence structure on (Yi,Xi)i∈Z. For any
m ∈ Z, we define themth strongly mixing coefficient of (Yi,Xi)i∈Z by

αm = sup
(A,B)∈F

(Y ,X)
−∞,0×F

(Y ,X)
m,∞

|P(A ∩ B)− P(A)P(B)| , (2.2)

where F
(Y ,X)
−∞,0 is the σ -algebra generated by . . . , (Y−1,X−1), (Y0,X0) and F

(Y ,X)
m,∞ is the σ -algebra generated by

(Ym,Xm), (Ym+1,Xm+1), . . . .
We suppose that there exist two constants γ > 0 and υ > 0 such that, for any integerm ≥ 1,

αm ≤ γ exp(−υm). (2.3)
This kind of dependence is reasonably weak. Further details on strongly mixing dependence can be found in [3,39,16,

27,6].
Boundedness assumptions.
• We suppose that ρ ∈ L1(R) ∩ L∞(R), i.e. there exist constants C1 > 0 and C2 > 0 (supposed known) such that

∞

−∞

|ρ(y)|dy ≤ C1, (2.4)

and sup
y∈R

|ρ(y)| ≤ C2. (2.5)
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• We suppose that there exists a known constant c1 > 0 such that

inf
x∈[0,1]d

f (x) ≥ c1. (2.6)

• For any m ∈ {1, . . . , n}, let f(Y0,X0,Ym,Xm) be the density of (Y0,X0, Ym,Xm), f(Y0,X0) the density of (Y0,X0) and, for any
(y, x, y∗, x∗) ∈ R × [0, 1]d × R × [0, 1]d,

hm(y, x, y∗, x∗) = f(Y0,X0,Ym,Xm)(y, x, y∗, x∗)− f(Y0,X0)(y, x)f(Y0,X0)(y∗, x∗). (2.7)

We suppose that there exists a known constant C3 > 0 such that

sup
m∈{1,...,n}

sup
(y,x,y∗,x∗)∈R×[0,1]d×R×[0,1]d

|hm(y, x, y∗, x∗)| ≤ C3. (2.8)

Such boundedness assumptions are standard for the estimation of gℓ from a strongly mixing process. The most common
example where this assumption holds is when ρ(y) = y1{|y|≤M}, where M denotes a positive constant. This corresponds to
the nonparametric regression model Y = g(X) + ε with E(ε) = 0, provided that ε and g are bounded from above. This is
exactly the setting considered in the simulations of Section 6. See, e.g., [12,13] or, for ℓ = d = 1, [25,31].

3. Wavelets and Besov balls

This section presents basics on wavelets and the sequential definitions of the Besov balls.

3.1. Wavelet bases on [0, 1]

Let R be a positive integer. We consider an orthonormal wavelet basis generated by dilations and translations of the
scaling and wavelet functions φ andψ from the Daubechies family db2R. In particular, φ andψ have compact supports and
unit L2-norm, and ψ has R vanishing moments, i.e. for any r ∈ {0, . . . , R − 1},


xrψ(x)dx = 0.

Define the scaled and translated version of φ and ψ

φj,k(x) = 2j/2φ(2jx − k), ψj,k(x) = 2j/2ψ(2jx − k).

Then, with an appropriate treatment at the boundaries, there exists an integer τ satisfying 2τ ≥ 2R such that, for any integer
j∗ ≥ τ , the collection

{φj∗,k(·), k ∈ {0, . . . , 2j∗ − 1}; ψj,k(·); j ∈ N − {0, . . . , j∗ − 1}, k ∈ {0, . . . , 2j
− 1}},

is an orthonormal basis of L2([0, 1]) = {h : [0, 1] → R;
 1
0 h2(x)dx < ∞}. See [9,24].

Consequently, for any integer j∗ ≥ τ , any h ∈ L2([0, 1]) can be expanded into a wavelet series as

h(x) =

2j∗−1
k=0

αj∗,kφj∗,k(x)+

∞
j=j∗

2j−1
k=0

βj,kψj,k(x), x ∈ [0, 1],

where

αj,k =

 1

0
h(x)φj,k(x)dx, βj,k =

 1

0
h(x)ψj,k(x)dx. (3.1)

3.2. Besov balls

As is traditional in the wavelet estimation literature, we will investigate the performance of our estimator by assuming
that the unknown function to be estimated belongs to a Besov ball. The Besov norm for a function can be related to a sequence
space norm on its wavelet coefficients. More precisely, let M > 0, s ∈ (0, R), p ≥ 1 and q ≥ 1. A function h in L2([0, 1])
belongs to the Besov ball Bs

p,q(M) of radiusM if, and only if, there exists a constantM∗ > 0 (depending onM) such that the
associated wavelet coefficients (3.1) satisfy ∞

j=τ

2j(s+1/2−1/p)

2j−1
k=0

|βj,k|
p

1/pq
1/q

≤ M∗.

In this expression, s is a smoothness parameter and p and q are norm parameters. Besov spaces include many traditional
smoothness spaces. For particular choices of s, p and q, Besov balls contain the standard Hölder and Sobolev balls. See [26].
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3.3. Wavelet tensor product bases on [0, 1]d

For the purpose of this paper, we will use compactly supported tensor product wavelet bases on [0, 1]d based on the
Daubechies family. Let us briefly recall their construction. For any x = (x1, . . . , xd) ∈ [0, 1]d, we construct a scaling function

Φ(x) =

d
v=1

φ(xv),

and 2d
− 1 wavelet functions

Ψu(x) =


ψ(xu)

d
v=1
v≠u

φ(xv) when u ∈ {1, . . . , d},


v∈Au

ψ(xv)

v∉Au

φ(xv) when u ∈ {d + 1, . . . , 2d
− 1},

where (Au)u∈{d+1,...,2d−1} forms the set of all non void subsets of {1, . . . , d} of cardinality greater than or equal to 2.
For any integer j and any k = (k1, . . . , kd), define the translated and dilated versions ofΦ and Ψu as

Φj,k(x) = 2jd/2Φ(2jx1 − k1, . . . , 2jxd − kd),

Ψj,k,u(x) = 2jd/2Ψu(2jx1 − k1, . . . , 2jxd − kd), for any u ∈ {1, . . . , 2d
− 1}.

Let Dj = {0, . . . , 2j
− 1}d. Then, with an appropriate treatment at the boundaries, there exists an integer τ such that the

collection

{Φτ ,k, k ∈ Dτ ; (Ψj,k,u)u∈{1,...,2d−1}, j ∈ N − {0, . . . , τ − 1}, k ∈ Dj}

forms an orthonormal basis of L2([0, 1]d) = {h : [0, 1]d → R;

[0,1]d h

2(x)dx < ∞}.
For any integer j∗ such that j∗ ≥ τ , a function h ∈ L2([0, 1]d) can be expanded into a wavelet series as

h(x) =


k∈Dj∗

αj∗,kΦj∗,k(x)+

2d−1
u=1

∞
j=j∗


k∈Dj

βj,k,uΨj,k,u(x), x ∈ [0, 1]d,

where

αj∗,k =


[0,1]d

h(x)Φj∗,k(x)dx, βj,k,u =


[0,1]d

h(x)Ψj,k,u(x)dx. (3.2)

4. The estimator

4.1. Wavelet coefficients estimator

The following proposition provides a wavelet decomposition of gℓ based on the ‘‘marginal integration’’ method
(introduced by [28]) and a tensor product wavelet basis on [0, 1]d.

Proposition 4.1. Suppose that (2.1) holds. Then, for any j∗ ≥ τ and ℓ ∈ {1, . . . , d}, we can write

gℓ(x) =

2j∗−1
k=1

aj∗,k,ℓφj∗,k(x)+

∞
j=j∗

2j−1
k=1

bj,k,ℓψj,k(x)− µ, x ∈ [0, 1],

where

aj∗,k,ℓ = aj∗,kℓ,ℓ = 2−j∗(d−1)/2


[0,1]d
g(x)


k−ℓ∈D∗

j∗

Φj∗,k(x)dx, (4.1)

bj,k,ℓ = bj,kℓ,ℓ = 2−j(d−1)/2


[0,1]d
g(x)


k−ℓ∈D∗

j

Ψj,k,ℓ(x)dx, (4.2)

and k−ℓ = (k1, . . . , kℓ−1, kℓ+1, . . . , kd) and D∗

j = {0, . . . , 2j
− 1}d−1.
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Remark 4.1. Due to the definitions of g and properties of Ψj,k,ℓ, bj,k,ℓ is nothing but the wavelet coefficient of gℓ, i.e.

bj,k,ℓ =

 1

0
gℓ(x)ψj,k(x)dx = βj,k. (4.3)

Proposition 4.1 suggests that a first step to estimate gℓ should consist in estimating the unknown coefficients aj,k,ℓ (4.1)
and bj,k,ℓ (4.2). To this end, we propose the following estimators of the coefficients

aj,k,ℓ =aj,kℓ,ℓ = 2−j(d−1)/2 1
n

n
i=1

ρ(Yi)

f (Xi)


k−ℓ∈D∗

j

Φj,k(Xi) (4.4)

and

bj,k,ℓ =bj,kℓ,ℓ = 2−j(d−1)/2 1
n

n
i=1

ρ(Yi)

f (Xi)


k−ℓ∈D∗

j

Ψj,k,ℓ(Xi). (4.5)

These estimators enjoy powerful statistical properties. Some of them are collected in the following propositions.

Proposition 4.2 (Unbiasedness). Suppose that (2.1) holds. For any j ≥ τ , ℓ ∈ {1, . . . , d} and k ∈ {0, . . . , 2j
− 1},aj,k,ℓ andbj,k,ℓ in (4.4) and (4.5) are unbiased estimators of aj,k,ℓ and bj,k,ℓ respectively.

The key ingredient for the proof of Proposition 4.2 is Proposition 4.1.

Proposition 4.3 (Moment Inequality I). Suppose that the assumptions of Section 2 hold. Let j ≥ τ such that 2j
≤ n, k ∈

{0, . . . , 2j
− 1}, ℓ ∈ {1, . . . , d}. Then there exists a constant C4 > 0 such that

E

(aj,k,ℓ − aj,k,ℓ)2


≤ C4

1
n
, E


(bj,k,ℓ − bj,k,ℓ)2


≤ C4

1
n
.

The proof of Proposition 4.3 is based on several covariance inequalities and the Davydov inequality for strongly mixing
processes (see [10]).

Remark 4.2. In the proof of Proposition 4.3, for the condition on αm, we only need to have the existence of two constants
C5 > 0 and q ∈ (0, 1) such that

n
m=1 m

qα
q
m ≤ C5 < ∞. This latter inequality is obviously satisfied by (2.3).

Proposition 4.4 (Moment Inequality II). Under the same assumptions of Proposition 4.3, there exists a constant C6 > 0 such
that

E

(bj,k,ℓ − bj,k,ℓ)4


≤ C6

2j

n
.

Proposition 4.5 (Concentration Inequality). Suppose that the assumptions of Section 2 hold. Let j ≥ τ such that ln n ≤ 2j
≤

n/(ln n)3, k ∈ {0, . . . , 2j
− 1}, ℓ ∈ {1, . . . , d} and λn = (ln n/n)1/2. Then there exist two constants C7 > 0 and κ > 0 such

that

P

|bj,k,ℓ − bj,k,ℓ| ≥ κλn/2


≤ C7

1
n4
.

The proof of Proposition 4.3 is based on a Bernstein like inequality for strongly mixing processes (see [22]).

4.2. Hard thresholding estimator

We now turn to the estimator of gℓ fromaj,k,ℓ andbj,k,ℓ as introduced in (4.4) and (4.5). Towards this goal, we will only
keep the significant wavelet coefficients that are above a certain threshold according to the hard thresholding rule, and then
reconstruct from these coefficients. In a compact form, this reads

gℓ(x) =

2j0−1
k=0

aj0,k,ℓφj0,k(x)+

j1
j=j0

2j−1
k=0

bj,k,ℓ1{|bj,k,ℓ|≥κλn}ψj,k(x)−µ, (4.6)
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where j0 is the resolution level satisfying 2j0 = [ln n],

µ =
1
n

n
i=1

ρ(Yi). (4.7)

j1 is the resolution level satisfying 2j1 = [n/(ln n)3], 1 is the indicator function, κ is a large enough constant (the one in
Proposition 4.5) and

λn =


ln n
n
.

The definitions of the parameters ingℓ are based on theoretical considerations (see the proof of Theorem5.1). Let usmention
that the threshold λn corresponds to the well-known universal one presented in [15] for the density estimation problem
in a i.i.d. setting. Note that, due to the assumptions on the model, our wavelet hard thresholding estimator (4.6) is simpler
than the one of [40]. Wavelet hard thresholding estimators for g (1.1) defined with only one component, i.e., ℓ = d = 1 in
a α-mixing dependence setting can be found in, e.g., [31,7,8].

5. Minimax upper-bound result

Theorem 5.1 investigates the minimax rates of convergence attained bygℓ over Besov balls under the L2 risk.

Theorem 5.1. Let ℓ ∈ {1, . . . , d}. Suppose that the assumptions of Section 2 hold. Letgℓ be the estimator given in (4.6). Suppose
that gℓ ∈ Bs

p,q(M) with q ≥ 1, {p ≥ 2 and s ∈ (0, R)} or {p ∈ [1, 2) and s ∈ (1/p, R)}. Then there exists a constant C8 > 0
such that

E
 1

0
(gℓ(x)− gℓ(x))2dx


≤ C8


ln n
n

2s/(2s+1)

.

The proof of Theorem 5.1 is based on a suitable decomposition of the L2 risk and the statistical properties of (4.4) and (4.5)
summarized in Propositions 4.2–4.5.

The rate (ln n/n)2s/(2s+1) is, up to an extra logarithmic term, known to be the optimal one for the standard one-
dimensional regression model with uniform random design in the i.i.d. case. See, e.g., [20,37]. In this setting, it is also the
rate of convergence attained by the one-dimensional wavelet hard thresholding estimator. See, e.g., [14,20].

Theorem 5.1 provides an ‘‘adaptive contribution’’ to the results of [5,11–13]. Furthermore, if we confine ourselves to the
i.i.d. case, we recover a similar result to [40, Theorem 3] but without the condition s > max(d/2, d/p). The price to pay
is more restrictive assumptions on the model (ρ is bounded from above, the density of X is known, etc.). Additionally, our
estimator has a more straightforward and friendly implementation than the one in [40].

6. Simulation results

In this section, a simulation study is conducted to illustrate the numerical performances of the above estimation proce-
dure. Six test functions (‘‘HeaviSine’’, ‘‘Parabolas’, ‘‘Blocks’’, ‘‘Bumps’’, ‘‘Wave’’ and ‘‘Doppler’’) representing different degrees
of smoothness were considered. These functions are displayed in Fig. 1.

In the following, we will take d = 2. To generate n observations of the process (Yi,Xi), we first consider the first-order
autoregressive AR(1) model

Zℓ,i = ρℓZℓ,i−1 + eℓ,i, eℓ,i ∼i.i.d N (0, 1), ρℓ ∈ (0, 1), i = 2, . . . , n, ℓ ∈ {1, 2}
Vi = µVi−1 + εi, εi ∼i.i.d N (0, 1), µ ∈ (0, 1), i = 2, . . . , n,

with Zℓ,1 ∼ N (0, 1) (resp. V1 ∼ N (0, 1)) and independent of eℓ,i (resp. of εi) for i ≥ 2, and Zℓ,i and Vi are mutually
independent. Then, for any i ≥ 1 and ℓ ∈ {1, 2} we take

Xℓ,i = FN


Zℓ,i; 0, 1

1−ρ2
ℓ


Wi = 2σW


FN


Vi; 0, 1

1−µ2


− τX1,i − (1 + τ)/2


, σW > 0, τ ≥ 0

Yi = g1(X1,i)+ g2(X2,i)+ Wi,

where FN (·; 0, σ 2) is the zero-mean normal distribution with variance σ 2. The functions g1 and g2 are chosen among the
test functions of Fig. 1. Observe that when τ > 0, the processes Yi and Xi are not mutually independent.
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Fig. 1. Original test functions.

First, the process (Vi, Zi) is strictly stationary and strongly mixing. It follows from continuity of the distribution function
that the stationarity and the mixing assumptions are met on the process (Yi,Xi); see e.g. [16]. Second, it is immediate that
for any i, X1,i ∼ U([0, 1]) and so is X2,i as required. In turn, this entails that the boundedness assumptions (2.6)–(2.8) hold.
Third, as Wi is zero-mean, we obviously have E(Yi|Xi = xi) = g1(x1,i) + g2(x2,i), i.e. ρ(Y ) = Y . In addition, since the
noise process Wi, as well as the test functions considered here are all bounded from above,1the boundedness assumptions
(2.4)–(2.5) are in force.

In the following simulations, we set ρ1 = 0.5, ρ2 = 0.9, µ = 0.8, τ = 1/10, and the scale parameter σW = 0.28, i.e. the
signal-to-noise ratio is 5. TheDaubechieswavelet db4 (i.e.R = 2)wasused. The constantκ in thehard thresholding estimator

1 For τ = 0,W1, . . . ,Wn are identically distributed with the common distribution U([−σW , σW ]). For τ > 0, they are identically distributed according
to the triangular distribution with support in [−σW (1 + τ), σW (1 + τ)].
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Fig. 2. Original functions gℓ (dashed) and their estimatesgℓ (solid), with ℓ = 1 (left) and ℓ = 2 (right) for different pairs of test functions, and two samples
sizes (n = 2562 and n = 20482).

was set to γ σW , where γ was chosen in [0.25, 2.5] where it was observed empirically to lead to the best performance. The
numerical performance of the estimator was measured using the Mean Squared Error (MSE), i.e.

MSE =
1
n

n
i=1

(g(xi)−g(xi))2,
where g is either of g1 or g2,g its estimate, and x1, . . . , xn ∈ [0, 1] are the corresponding observed sampling points.

Fig. 2 displays the results of the estimator for different pairs of tested functions with two numbers of samples n. Vi-
sual inspection shows the good performance of our estimator which is able to adaptively recover a large class of functions
spanning a wide range of spatial inhomogeneities. As expected, the estimation quality increases with growing n. This vi-
sual impression is confirmed quantitatively by Figs. 3 and 4. In these figures, the above simulation was repeated 100 times
and the obtained MSE was averaged across these replications. Fig. 3 depicts the boxplots of the MSE versus the function.
Each plot corresponds to a fixed number of samples increasing from top to bottom. For a given number of samples, the
average MSE and its variability is comparable for all functions, though they are slightly higher for the functions Heavi-
Sine and Wave. As observed visually in Fig. 2, the average MSE decreases with n as reported in Fig. 4. Moreover, the aver-
age MSE shows a linear decreasing behavior in log–log scale, which is clearly consistent with our theoretical convergence
result.
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Fig. 3. Boxplots of the average MSE for each tested function with the same pairs as those of Fig. 2. Each plot corresponds to a number of samples
n ∈ {212, 214, . . . , 222

} increasingly from top to bottom.

Fig. 4. Average MSE over 100 replications as a function of the number of samples.

7. Proofs

In this section, the quantity C denotes any constant that does not depend on j, k and n. Its value may change from one
term to another and may depend on φ or ψ .

7.1. Technical results on wavelets

Proof of Proposition 4.1. Because of (2.5), we have g ∈ L2([0, 1]d). For any j∗ ≥ τ , we can expand g on our wavelet-tensor
product basis as

g(x) =


k∈Dj∗

αj∗,kΦj∗,k(x)+

2d−1
u=1

∞
j=j∗


k∈Dj

βj,k,uΨj,k,u(x), x ∈ [0, 1]d (7.1)
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where

αj∗,k =


[0,1]d

g(x)Φj∗,k(x)dx, βj,k,u =


[0,1]d

g(x)Ψj,k,u(x)dx.

Moreover, using the ‘‘marginal integration’’ method based on (2.1), we can write

gℓ(xℓ) =


[0,1]d−1

g(x)
d
v=1
v≠ℓ

dxv − µ, xℓ ∈ [0, 1]. (7.2)

Since
 1
0 φj,k(x)dx = 2−j/2 and

 1
0 ψj,k(x)dx = 0, observe that

[0,1]d−1
Φj∗,k(x)

d
v=1
v≠ℓ

dxv = 2−j∗(d−1)/2φj∗,kℓ(xℓ)

and 
[0,1]d−1

Ψj,k,u(x)
d
v=1
v≠ℓ

dxv =


2−j(d−1)/2ψj,kℓ(xℓ) if u = ℓ,
0 otherwise.

Therefore, putting (7.1) in (7.2) and writing x = xℓ, we obtain

gℓ(x) =


k∈Dj∗

2−j∗(d−1)/2αj∗,kφj∗,kℓ(x)+

∞
j=j∗


k∈Dj

2−j(d−1)/2βj,k,ℓψj,kℓ(x)− µ.

Or, equivalently,

gℓ(x) =

2j∗−1
k=1

aj∗,k,ℓφj∗,k(x)+

∞
j=j∗

2j−1
k=1

bj,k,ℓψj,k(x)− µ,

where

aj,k,ℓ = aj,kℓ,ℓ = 2−j(d−1)/2


[0,1]d
g(x)


k−ℓ∈D∗

j

Φj,k(x)dx

and

bj,k,ℓ = bj,kℓ,ℓ = 2−j(d−1)/2


[0,1]d
g(x)


k−ℓ∈D∗

j

Ψj,k,ℓ(x)dx.

Proposition 4.1 is proved. �

Proposition 7.1. For any ℓ ∈ {1, . . . , d}, j ≥ τ and k = kℓ ∈ {0, . . . , 2j
− 1}, set

h(1)j,k (x) =


k−ℓ∈D∗

j

Φj,k(x), h(2)j,k (x) =


k−ℓ∈D∗

j

Ψj,k,ℓ(x), x ∈ [0, 1]d.

Then there exists a constant C > 0 such that, for any a ∈ {1, 2},

sup
x∈[0,1]d

|h(a)j,k (x)| ≤ C2jd/2,


[0,1]d

|h(a)j,k (x)|dx ≤ C2−j/22j(d−1)/2

and 
[0,1]d

(h(a)j,k (x))
2dx = 2j(d−1).

Proof. • Since supx∈[0,1] |φj,k(x)| ≤ C2j/2 and supx∈[0,1]
2j−1

k=0 |φj,k(x)| ≤ C2j/2, we obtain

sup
x∈[0,1]d

|h(1)j,k (x)| = ( sup
x∈[0,1]

|φj,k(x)|)

 sup
x∈[0,1]

2j−1
k=0

|φj,k(x)|

d−1

≤ C2jd/2.
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• Using
 1
0 |φj,k(x)|dx = C2−j/2, we obtain


[0,1]d

|h(1)j,k (x)|dx ≤

 1

0
|φj,k(x)|dx

2j−1
k=0

 1

0
|φj,k(x)|dx

d−1

= C2−j/22j(d−1)/2.

• Since, for any (uk)k∈Dj ,

[0,1]d


k∈Dj

ukΦj,k(x)
2

dx =


k∈Dj
u2
k, we obtain


[0,1]d

(h(1)j,k (x))
2dx =


[0,1]d

 
k−ℓ∈D∗

j

Φj,k(x)

2

dx = 2j(d−1).

Proceeding in a similar fashion, using supx∈[0,1] |ψj,k(x)| ≤ C2j/2,
 1
0 |ψj,k(x)|dx = C2−j/2 and, for any (uk)k∈Dj ,

[0,1]d


k∈Dj

ukΨj,k,ℓ(x)
2

dx =


k∈Dj
u2
k, we obtain the same results for h(2)j,k .

This ends the proof of Proposition 7.1. �

7.2. Statistical properties of the coefficients estimators

Proof of Proposition 4.2. We have

E(aj,k,ℓ) = 2−j(d−1)/2E

ρ(Y1)

f (X1)


k−ℓ∈D∗

j

Φj,k(X1)


= 2−j(d−1)/2E

E(ρ(Y1)|X1)
1

f (X1)


k−ℓ∈D∗

j

Φj,k(X1)


= 2−j(d−1)/2E

g(X1)

f (X1)


k−ℓ∈D∗

j

Φj,k(X1)


= 2−j(d−1)/2


[0,1]d

g(x)
f (x)


k−ℓ∈D∗

j

Φj,k(x)f (x)dx

= 2−j(d−1)/2


[0,1]d
g(x)


k−ℓ∈D∗

j

Φj,k(x)dx = aj,k,ℓ.

Proceeding in a similar fashion, we prove that E(bj,k,ℓ) = bj,k,ℓ. �

Proof of Proposition 4.3. For the sake of simplicity, for any i ∈ {1, . . . , n}, set

Zi =
ρ(Yi)

f (Xi)


k−ℓ∈D∗

j

Φj,k(Xi).

Thanks to Proposition 4.2, we have

E

(aj,k,ℓ − aj,k,ℓ)2


= V(aj,k,ℓ) = 2−j(d−1) 1

n2
V


n

i=1

Zi


. (7.3)

An elementary covariance decomposition gives

V


n

i=1

Zi


= nV (Z1)+ 2

n
v=2

v−1
u=1

Cov (Zv, Zu)

≤ nV (Z1)+ 2

 n
v=2

v−1
u=1

Cov (Zv, Zu)

 . (7.4)
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Using (2.5), (2.6) and Proposition 7.1, we have

V (Z1) ≤ E(Z2
1 ) ≤

sup
y∈R

ρ2(y)

inf
x∈[0,1]d

f (x)
E

 1
f (X1)

 
k−ℓ∈D∗

j

Φj,k(X1)

2
≤ C


[0,1]d

1
f (x)

 
k−ℓ∈D∗

j

Φj,k(x)

2

f (x)dx

= C


[0,1]d

 
k−ℓ∈D∗

j

Φj,k(x)

2

dx = C2j(d−1). (7.5)

It follows from the stationarity of (Yi,Xi)i∈Z and 2j
≤ n that n

v=2

v−1
u=1

Cov (Zv, Zu)

 =

 n
m=1

(n − m)Cov (Z0, Zm)

 ≤ R1 + R2, (7.6)

where

R1 = n
2j−1
m=1

|Cov (Z0, Zm)| , R2 = n
n

m=2j
|Cov (Z0, Zm)| .

It remains to bound R1 and R2.

(i) Bound for R1. Let, for any (y, x, y∗, x∗) ∈ R × [0, 1]d × R × [0, 1]d, hm(y, x, y∗, x∗) be (2.7). Using (2.8), (2.4) and
Proposition 7.1, we obtain

|Cov (Z0, Zm)| =

 ∞

−∞


[0,1]d


∞

−∞


[0,1]d

hm(y, x, y∗, x∗)

×

ρ(y)
f (x)


k−ℓ∈D∗

j

Φj,k(x)
ρ(y∗)

f (x∗)


k−ℓ∈D∗

j

Φj,k(x∗)

 dydxdy∗dx∗


≤


∞

−∞


[0,1]d


∞

−∞


[0,1]d

|hm(y, x, y∗, x∗)|

×

ρ(y)f (x)





k−ℓ∈D∗
j

Φj,k(x)


ρ(y∗)

f (x∗)





k−ℓ∈D∗
j

Φj,k(x∗)

 dydxdy∗dx∗

≤ C


∞

−∞

|ρ(y)|dy
2


[0,1]d




k−ℓ∈D∗
j

Φj,k(x)

 dx
2

≤ C2−j2j(d−1).

Therefore

R1 ≤ Cn2−j2j(d−1)2j
= Cn2j(d−1). (7.7)

(ii) Bound for R2. By the Davydov inequality for strongly mixing processes (see [10]), for any q ∈ (0, 1), we have

|Cov (Z0, Zm)| ≤ 10αq
m


E

|Z0|2/(1−q)1−q

≤ 10αq
m

 sup
y∈R

|ρ(y)|

inf
x∈[0,1]d

f (x)
sup

x∈[0,1]d




k−ℓ∈D∗
j

Φj,k(x)


2q 

E(Z2
0 )
1−q

.

By (2.5), (2.6) and Proposition 7.1, we have
sup
y∈R

|ρ(y)|

inf
x∈[0,1]d

f (x)
sup

x∈[0,1]d




k−ℓ∈D∗
j

Φj,k(x)

 ≤ C sup
x∈[0,1]d




k−ℓ∈D∗
j

Φj,k(x)


≤ C2jd/2.
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By (7.5), we have

E

Z2
0


≤ C2j(d−1).

Therefore

|Cov (Z0, Zm)| ≤ C2qj2j(d−1)αq
m.

Observe that


∞

m=1 m
qα

q
m = γ q∞

m=1 m
q exp(−cqm) < ∞. Hence

R2 ≤ Cn2qj2j(d−1)
n

m=2j
αq
m ≤ Cn2j(d−1)

n
m=2j

mqαq
m ≤ Cn2j(d−1). (7.8)

Putting (7.6)–(7.8) together, we have n
v=2

v−1
u=1

Cov (Zv, Zu)

 ≤ Cn2j(d−1). (7.9)

Combining (7.3)–(7.5) and (7.9), we obtain

E

(aj,k,ℓ − aj,k,ℓ)2


≤ C2−j(d−1) 1

n2
n2j(d−1)

= C
1
n
.

Proceeding in a similar fashion, we prove that

E

(bj,k,ℓ − bj,k,ℓ)2


≤ C

1
n
.

This ends the proof of Proposition 4.3. �

Proof of Proposition 4.4. It follows from (2.5), (2.6) and Proposition 7.1 that

|bj,k,ℓ| ≤ 2−j(d−1)/2 1
n

n
i=1

|ρ(Yi)|

|f (Xi)|




k−ℓ∈D∗
j

Ψj,k,ℓ(Xi)


≤ 2−j(d−1)/2

sup
y∈R

|ρ(y)|

inf
x∈[0,1]d

f (x)
sup

x∈[0,1]d




k−ℓ∈D∗
j

Ψj,k,ℓ(x)


≤ C2−j(d−1)/22jd/2

= C2j/2.

Because of (2.5), we have supx∈[0,1]d |g(x)| ≤ C . It follows from Proposition 7.1 that

|bj,k,ℓ| ≤ 2−j(d−1)/2


[0,1]d
|g(x)|




k−ℓ∈D∗
j

Ψj,k,ℓ(x)

 dx
≤ C2−j(d−1)/2


[0,1]d




k−ℓ∈D∗
j

Ψj,k,ℓ(x)

 dx
≤ C2−j(d−1)/22−j2jd/2

= C2−j/2. (7.10)

Hence

|bj,k,ℓ − bj,k,ℓ| ≤ |bj,k,ℓ| + |bj,k,ℓ| ≤ C2j/2. (7.11)

It follows from (7.11) and Proposition 4.3 that

E

(bj,k,ℓ − bj,k,ℓ)4


≤ C2jE


(bj,k,ℓ − bj,k,ℓ)2


≤ C

2j

n
.

The proof of Proposition 4.4 is complete. �

Proof of Proposition 4.5. Let us first state a Bernstein inequality for exponentially strongly mixing process.
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Lemma 7.1 ([22]). Let (Yi)i∈Z be a strictly stationary process with the mth strongly mixing coefficient αm (2.2). Let n be a positive
integer, h : R → C be a measurable function and, for any i ∈ Z, Ui = h(Yi). We assume that E(U1) = 0 and there exists a
constant M > 0 satisfying |U1| ≤ M. Then, for any m ∈ {1, . . . , [n/2]} and λ > 0, we have

P

1n
n

i=1

Ui

 ≥ λ


≤ 4 exp


−

λ2n
16(Dm/m + λMm/3)


+ 32

M
λ
nαm,

where Dm = maxl∈{1,...,2m} V
l

i=1 Ui


.

We now apply this lemma by setting for any i ∈ {1, . . . , n},

Ui = 2−j(d−1)/2 ρ(Yi)

f (Xi)


k−ℓ∈D∗

j

Ψj,k,ℓ(Xi)− bj,k,ℓ.

Then we can write

bj,k,ℓ − bj,k,ℓ =
1
n

n
i=1

Ui.

So

P

|bj,k,ℓ − bj,k,ℓ| ≥ κλn/2


= P

1n
n

i=1

Ui

 ≥ κλn/2


,

where U1, . . . ,Un are identically distributed, depend on (Yi,Xi)i∈Z satisfying (2.3),
• by Proposition 4.2, we have E(U1) = 0,
• using arguments similar to the bound of R1 in the proof of Proposition 4.3 with l instead of n satisfying l ≤ C ln n and

2−j
≤ 1/ ln n, we prove that

V


l

i=1

Ui


≤ C


l + l22−j

≤ C

l +

l2

ln n


≤ Cl.

Hence

Dm = max
l∈{1,...,2m}

V


l

i=1

Ui


≤ Cm.

• proceeding in a similar fashion to (7.11), we obtain |U1| ≤ C2j/2.
Lemma 7.1 applied with the random variables U1, . . . ,Un, λ = κλn/2, λn = (ln n/n)1/2, m = [u ln n] with u > 0 (chosen
later), M = C2j/2, 2j

≤ n/(ln n)3 and (2.3) gives

P

|bj,k,ℓ − bj,k,ℓ| ≥ κλn/2


≤ C


exp


−C

κ2λ2nn
Dm/m + κλnmM


+

M
λn

n exp(−υm)


≤ C

exp


−C

κ2 ln n
1 + κu2j/2 ln n(ln n/n)1/2


+

2j/2

(ln n/n)1/2
n exp(−υu ln n)


≤ C


n−Cκ2/(1+κu)

+ n2−υu

.

Therefore, for large enough κ and u, we have

P

|bj,k,ℓ − bj,k,ℓ| ≥ κλn/2


≤ C

1
n4
.

This ends the proof of Proposition 4.5. �

7.3. Proof of Theorem 5.1

Using Proposition 4.1, we have

gℓ(x)− gℓ(x) =

2j0−1
k=0

(αj0,k,ℓ − αj0,k,ℓ)φj0,k(x)+

j1
j=j0

2j−1
k=0

(bj,k,ℓ1{|bj,k,ℓ|≥κλn} − bj,k,ℓ)ψj,k(x)

−

∞
j=j1+1

2j−1
k=0

bj,k,ℓψj,k(x)− (µ− µ).
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Using the elementary inequality: (x + y)2 ≤ 2(x2 + y2), (x, y) ∈ R2, and the orthonormal property of the wavelet basis, we
have

E
 1

0
(gℓ(x)− gℓ(x))2dx


≤ 2(T + U + V + W ), (7.12)

where

T = E((µ− µ)2), U =

2j0−1
k=0

E

(αj0,k,ℓ − αj0,k,ℓ)

2 ,
V =

j1
j=j0

2j−1
k=0

E

(bj,k,ℓ1{|bj,k,ℓ|≥κλn} − bj,k,ℓ)2


, W =

∞
j=j1+1

2j−1
k=0

b2j,k,ℓ.

(i) Bound for T . We proceed as in the proof of Proposition 4.3. By (2.1), we have E(ρ(Y1)) = µ. Thanks to the stationarity
of (Yi)i∈Z, we have

T = V(µ) ≤
1
n

V(ρ(Y1))+ 2
1
n

n
m=1

|Cov (ρ(Y0), ρ(Ym))| .

Using (2.5), the Davydov inequality (see [10]) and (2.3), we obtain

T ≤ C
1
n


1 +

n
m=1

αq
m


≤ C

1
n

≤ C

ln n
n

2s/(2s+1)

. (7.13)

(ii) Bound for U . Using Proposition 4.3, we obtain

U ≤ C2j0
1
n

≤ C
ln n
n

≤ C

ln n
n

2s/(2s+1)

. (7.14)

(iii) Bound for W . For q ≥ 1 and p ≥ 2, we have gℓ ∈ Bs
p,q(M) ⊆ Bs

2,∞(M). Hence, by (4.3),

W ≤ C
∞

j=j1+1

2−2js
≤ C2−2j1s ≤ C


(ln n)3

n

2s

≤ C

ln n
n

2s/(2s+1)

.

For q ≥ 1 and p ∈ [1, 2), we have gℓ ∈ Bs
p,q(M) ⊆ Bs+1/2−1/p

2,∞ (M). Since s > 1/p, we have s + 1/2 − 1/p > s/(2s + 1).
So, by (4.3),

W ≤ C
∞

j=j1+1

2−2j(s+1/2−1/p)
≤ C2−2j1(s+1/2−1/p)

≤ C

(ln n)3

n

2(s+1/2−1/p)

≤ C

ln n
n

2s/(2s+1)

.

Hence, for q ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p}, we have

W ≤ C

ln n
n

2s/(2s+1)

. (7.15)

(iv) Bound for V . We will use arguments similar to [20, Proposition 10.3]. Observe that

V = V1 + V2 + V3 + V4, (7.16)

where

V1 =

j1
j=j0

2j−1
k=0

E

(bj,k,ℓ − bj,k,ℓ)21{|bj,k,ℓ|≥κλn, |bj,k,ℓ|<κλn/2}


,

V2 =

j1
j=j0

2j−1
k=0

E

(bj,k,ℓ − bj,k,ℓ)21{|bj,k,ℓ|≥κλn, |bj,k,ℓ|≥κλn/2}


,

V3 =

j1
j=j0

2j−1
k=0

E

b2j,k,ℓ1{|bj,k,ℓ|<κλn, |bj,k,ℓ|≥2κλn}


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and

V4 =

j1
j=j0

2j−1
k=0

E

b2j,k,ℓ1{|bj,k,ℓ|<κλn, |bj,k,ℓ|<2κλn}


.

• Bounds for V1 and V3. The following inclusions hold:
|bj,k,ℓ| < κλn, |bj,k,ℓ| ≥ 2κλn


⊆

|bj,k,ℓ − bj,k,ℓ| > κλn/2


,

|bj,k,ℓ| ≥ κλn, |bj,k,ℓ| < κλn/2


⊆

|bj,k,ℓ − bj,k,ℓ| > κλn/2


and


|bj,k,ℓ| < κλn, |bj,k,ℓ| ≥ 2κλn


⊆

|bj,k,ℓ| ≤ 2|bj,k,ℓ − bj,k,ℓ|


.

So

max(V1, V3) ≤ C
j1

j=j0

2j−1
k=0

E

(bj,k,ℓ − bj,k,ℓ)21{|bj,k,ℓ−bj,k,ℓ|>κλn/2}


.

Applying the Cauchy–Schwarz inequality and using Propositions 4.4, 4.5 and 2j
≤ n, we have

E

(bj,k,ℓ − bj,k,ℓ)21{|bj,k,ℓ−bj,k,ℓ|>κλn/2}


≤

E

(bj,k,ℓ − bj,k,ℓ)4

1/2 
P

|bj,k,ℓ − bj,k,ℓ| > κλn/2

1/2
≤ C


2j

n

1/2  1
n4

1/2

≤ C
1
n2
.

Therefore

max(V1, V3) ≤ C
1
n2

j1
j=j0

2j
≤ C

1
n2

2j1 ≤ C
1
n

≤ C

ln n
n

2s/(2s+1)

. (7.17)

• Bound for V2. Using Proposition 4.3, we obtain

E

(bj,k,ℓ − bj,k,ℓ)2


≤ C

1
n

≤ C
ln n
n
.

Hence

V2 ≤ C
ln n
n

j1
j=j0

2j−1
k=0

1{|bj,k,ℓ|>κλn/2}.

Let j2 be the integer defined by

2j2 =

 n
ln n

1/(2s+1)

. (7.18)

We have
V2 ≤ V2,1 + V2,2,

where

V2,1 = C
ln n
n

j2
j=j0

2j−1
k=0

1{|bj,k,ℓ|>κλn/2}

and

V2,2 = C
ln n
n

j1
j=j2+1

2j−1
k=0

1{|bj,k,ℓ|>κλn/2}.

We have

V2,1 ≤ C
ln n
n

j2
j=j0

2j
≤ C

ln n
n

2j2 ≤ C

ln n
n

2s/(2s+1)

.

For q ≥ 1 and p ≥ 2, we have gℓ ∈ Bs
p,q(M) ⊆ Bs

2,∞(M). So, by (4.3),

V2,2 ≤ C
ln n
nλ2n

j1
j=j2+1

2j−1
k=0

b2j,k,ℓ ≤ C
∞

j=j2+1

2j−1
k=0

β2
j,k ≤ C2−2j2s

≤ C

ln n
n

2s/(2s+1)

.

For q ≥ 1, p ∈ [1, 2) and s > 1/p, using (4.3), 1{|bj,k,ℓ|>κλn/2} ≤ C |bj,k,ℓ|p/λ
p
n = C |βj,k|

p/λ
p
n, gℓ ∈ Bs

p,q(M) and
(2s + 1)(2 − p)/2 + (s + 1/2 − 1/p)p = 2s, we have

V2,2 ≤ C
ln n
nλpn

j1
j=j2+1

2j−1
k=0

|βj,k|
p

≤ C

ln n
n

(2−p)/2 ∞
j=j2+1

2−j(s+1/2−1/p)p

≤ C

ln n
n

(2−p)/2

2−j2(s+1/2−1/p)p
≤ C


ln n
n

2s/(2s+1)

.
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So, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p}, we have

V2 ≤ C

ln n
n

2s/(2s+1)

. (7.19)

• Bound for V4. We have

V4 ≤

j1
j=j0

2j−1
k=0

b2j,k,ℓ1{|bj,k,ℓ|<2κλn}.

Let j2 be the integer (7.18). Then
V4 ≤ V4,1 + V4,2,

where

V4,1 =

j2
j=j0

2j−1
k=0

b2j,k,ℓ1{|bj,k,ℓ|<2κλn}, V4,2 =

j1
j=j2+1

2j−1
k=0

b2j,k,ℓ1{|bj,k,ℓ|<2κλn}.

We have

V4,1 ≤ C
j2

j=j0

2jλ2n = C
ln n
n

j2
j=j0

2j
≤ C

ln n
n

2j2 ≤ C

ln n
n

2s/(2s+1)

.

For q ≥ 1 and p ≥ 2, we have gℓ ∈ Bs
p,q(M) ⊆ Bs

2,∞(M). Hence, by (4.3),

V4,2 ≤

∞
j=j2+1

2j−1
k=0

β2
j,k ≤ C2−2j2s ≤ C


ln n
n

2s/(2s+1)

.

For q ≥ 1, p ∈ [1, 2) and s > 1/p, using (4.3), b2j,k,ℓ1{|bj,k,ℓ|<2κλn} ≤ Cλ2−p
n |bj,k,ℓ|p = Cλ2−p

n |βj,k|
p, gℓ ∈ Bs

p,q(M) and
(2s + 1)(2 − p)/2 + (s + 1/2 − 1/p)p = 2s, we have

V4,2 ≤ Cλ2−p
n

j1
j=j2+1

2j−1
k=0

|βj,k|
p

= C

ln n
n

(2−p)/2 j1
j=j2+1

2j−1
k=0

|βj,k|
p

≤ C

ln n
n

(2−p)/2 ∞
j=j2+1

2−j(s+1/2−1/p)p

≤ C

ln n
n

(2−p)/2

2−j2(s+1/2−1/p)p
≤ C


ln n
n

2s/(2s+1)

.

Thus, for q ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p}, we have

V4 ≤ C

ln n
n

2s/(2s+1)

. (7.20)

It follows from (7.16), (7.17), (7.19) and (7.20) that

V ≤ C

ln n
n

2s/(2s+1)

. (7.21)

Combining (7.12)–(7.15) and (7.21), we have, for q ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p},

E
 1

0
(gℓ(x)− gℓ(x))2dx


≤ C


ln n
n

2s/(2s+1)

.

The proof of Theorem 5.1 is complete. �
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