期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:144
Least product relative error estimation
Article
Chen, Kani1  Lin, Yuanyuan2  Wang, Zhanfeng3  Ying, Zhiliang4 
[1] Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
[2] Chinese Univ Hong Kong, Dept Stat, Shatin, Hong Kong, Peoples R China
[3] Univ Sci & Technol China, Dept Stat & Finance, Hefei 230026, Peoples R China
[4] Columbia Univ, Dept Stat, New York, NY 10027 USA
关键词: Multiplicative regression model;    Product form;    Relative error;    Scale invariance;    Variance estimation;   
DOI  :  10.1016/j.jmva.2015.10.017
来源: Elsevier
PDF
【 摘 要 】

A least product relative error criterion is proposed for multiplicative regression models. It is invariant under scale transformation of the outcome and covariates. In addition, the objective function is smooth and convex, resulting in a simple and uniquely defined estimator of the regression parameter. It is shown that the estimator is asymptotically normal and that the simple plug-in variance estimation is valid. Simulation results confirm that the proposed method performs well. An application to body fat calculation is presented to illustrate the new method. (C) 2015 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2015_10_017.pdf 399KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:0次