期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:486
Cramer type moderate deviations for self-normalized ψ-mixing sequences
Article
Fan, Xiequan1 
[1] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
关键词: Cramer moderate deviations;    Self-normalized processes;    Studentized statistics;    Relative error;    Continued fraction expansions;   
DOI  :  10.1016/j.jmaa.2020.123902
来源: Elsevier
PDF
【 摘 要 】

Let (eta(i))(i >= 1) be a sequence of psi-mixing random variables. Let m = (sic)n(alpha)(sic), 0 < alpha < 1 k = [n/(2m)], and Y-j = Sigma(m)(i=1) eta(m(j-1)+i), 1 <= j <= k. Set S-k degrees = Sigma Y-k(j=1)j and [S degrees](kappa) = Sigma(k)(i=1) (Y-j)(2). We prove a Cramer type moderate deviation expansion for P(S-kappa degrees/root[S degrees](kappa) >= x) as n (R) infinity. Our result is similar to the recent work of Chen et al. (2016) [4] where the authors established Cramer type moderate deviation expansions for beta-mixing sequences. Comparing to the result of Chen et al., our results hold for mixing coefficients with polynomial decaying rate and wider ranges of validity. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2020_123902.pdf 386KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:0次