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Let (ηi)i≥1 be a sequence of ψ-mixing random variables. Let m = �nα�, 0 < α <
1, k = �n/(2m)�, and Yj =

∑m
i=1 ηm(j−1)+i, 1 ≤ j ≤ k. Set So

k =
∑k

j=1 Yj and 
[So]k =

∑k
i=1(Yj)2. We prove a Cramér type moderate deviation expansion for 

P(So
k/
√

[So]k ≥ x) as n → ∞. Our result is similar to the recent work of Chen 
et al. (2016) [4] where the authors established Cramér type moderate deviation 
expansions for β-mixing sequences. Comparing to the result of Chen et al., our 
results hold for mixing coefficients with polynomial decaying rate and wider ranges 
of validity.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The study of the relative errors for Gaussian approximations can be traced back to Cramér [6]. Let (Xi)i≥1
be a sequence of independent and identically distributed (i.i.d.) centered real random variables satisfying 
the condition E exp{c0|X1|} < ∞ for some constant c0 > 0. Denote σ2 = EX2

1 and Sn =
∑n

i=1 Xi. Cramér 
established the following asymptotic moderate deviation expansion on the tail probabilities of Sn: For all 
0 ≤ x = o(n1/2), ∣∣∣∣∣ ln P (Sn ≥ xσ

√
n)

1 − Φ(x)

∣∣∣∣∣ = O(1)(1 + x)3√
n

as n → ∞, (1.1)

where Φ(x) = 1√
2π

∫ x

−∞ exp{−t2/2}dt is the standard normal distribution. In particular, inequality (1.1)
implies that

P (Sn ≥ xσ
√
n)

1 − Φ (x) = 1 + o(1) (1.2)
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uniformly for 0 ≤ x = o(n1/6). Following the seminal work of Cramér, various moderate deviation expansions 
for standardized sums have been obtained by many authors (see, for instance, Petrov [22,23], Linnik [20], 
Saulis and Statulevičius [26] and [11,13]). See also Račkauskas [24,25], Grama [16], Grama and Haeusler 
[17] and Fan, Grama and Liu [12] for martingales.

To establish moderate deviation expansions type of (1.2) for 0 ≤ x = o(nα), α > 0, we should assume 
that the random variables have finite moments of any order, see Linnik [20]. The last assumption becomes 
too restrictive if we only have finite moments of order 2 + δ, δ ∈ (0, 1]. Thought we still can obtain (1.2)
via Berry-Esseen estimations, the range cannot wider than |x| = O(

√
lnn), n → ∞. To overcome this 

shortcoming, a new type Cramér type moderate deviations (CMD), called self-normalized CMD, has been 
developed by Shao [27]. Instead of considering the moderate deviations for standardized sums Sn/

√
nσ2, 

Shao [27] considered the moderate deviations for self-normalized sums Wn := Sn/
√∑n

i=1 X
2
i . Comparing to 

the standardized counterpart, the range of Gaussian approximation for self-normalized CMD can be much 
wider range than its counterpart for standardized sums under same finite moment conditions. Moreover, in 
practice one usually does not known the variance of Sn. Even the latter can be estimated, it is still advisable 
to use self-normalized CMD for more user-friendly. Due to these significant advantages, the study of CMD 
for self-normalized sums attracts more and more attentions. For more self-normalized CMD for independent 
random variables, we refer to, for instance, Jing, Shao and Wang [18] and Liu, Shao and Wang [21]. We 
also refer to de la Peña, Lai and Shao [9], Shao and Wang [29] and Shao [28] for recent developments in this 
area. For closely related results, see also de la Peña [8] and Bercu and Touati [2] for exponential inequalities 
for self-normalized martingales.

Thought self-normalized CMD for independent random variables has been well studied, there are only a 
few of results for weakly dependent random variables. One of the main results in this field is due to Chen et 
al. [4]. Let (ηi)i≥1 be a (may be non-stationary) sequence of random variables. Set α ∈ (0, 1). Let m = �nα	
and k = �n/(2m)	, where �x	 denote the integer part of x. Denote

Yj =
m∑
i=1

η2m(j−1)+i, 1 ≤ j ≤ k.

Set

So
k =

k∑
j=1

Yj and [So]k =
k∑

j=1
(Yj)2.

Define the interlacing self-normalized sums as follows

W o
n = So

k/
√

[So]k. (1.3)

Let Fj and F∞
j+k be σ-fields generated respectively by (ηi)i≤j and (ηi)i≥j+k. The sequence of random 

variables (ηi)i≥1 is called β-mixing if the mixing coefficient

β(n) := sup
j

E sup{
∣∣P (A|Fj) − P (A)

∣∣ : A ∈ F∞
j+n} → 0 as n → ∞, (1.4)

see Doukhan [10]. Write

Sl,s =
l+s∑

ηi

i=l+1
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the block sums of (ηi)i≥1 for l + 1 ≤ i ≤ l + s. Throughout the paper, denote c, probably supplied with 
some indices, a generic positive constant. Assume that (ηi)i≥1 are centered, that is

Eηi = 0 for all i, (1.5)

and that there exists a constant ν ∈ (0, 1] such that

E|ηi|2+ν ≤ c2+ν
0 (1.6)

and

ES2
l,s ≥ c21s for all l ≥ 0 and s ≥ 1. (1.7)

By Theorem 4.1 of Shao and Yu [30], it is known that condition (1.6) usually implies the following condition: 
there exists a constant ρ ∈ (0, 1] such that

E|Sl,s|2+ρ ≤ s1+ρ/2c2+ρ
2 for all l ≥ 0 and s ≥ 1, (1.8)

provided that the mixing coefficient has a polynomially decaying rate as n → ∞. In (1.8), it is usually that 
ρ < ν. Assume conditions (1.5)-(1.7). Assume also that there exist positive constants a1, a2 and τ such that

β(n) ≤ a1e
−a2n

τ

.

Using m-dependent approximation, Chen et al. [4] proved that for any positive ρ < ν,∣∣∣∣∣ ln P (W o
n ≥ x)

1 − Φ (x)

∣∣∣∣∣ ≤ cρ

(
(1 + x)2+ρ

n(1−α)ρ/2

)
(1.9)

uniform for 0 ≤ x = o(min{n(1−α)/2, nατ/2}), where cρ depends only on c0, c1, ρ, a1, a2 and τ . In particular, 
it implies that

P (W o
n ≥ x)

1 − Φ (x) = 1 + o(1) (1.10)

uniformly for 0 ≤ x = o(min{n(1−α)ρ/(4+2ρ), nατ/2}). Equality (1.10) implies that the tail probabilities of W o
n

can be uniformly approximated by the standard normal distribution for moderate x’s. Such type of results 
play an important role in statistical inference of means, see Section 5 of Chen et al. [4] for applications. 
Inspiring the proof of Chen et al. [4], it is easy to see that (1.9) remains valid when the conditions (1.5)-(1.7)
are replaced by the slightly more general conditions (1.5), (1.7) and (1.8).

In this paper, we are interested to extend the results of Chen et al. [4] to ψ-mixing sequences, with 
conditions (1.5), (1.7) and (1.8). By Proposition 1 in Doukhan [10], it is known that ψ-mixing usually 
implies β-mixing. However, the ranges of our results do not depend on the mixing coefficients. Indeed, our 
ranges of validity for (1.9) and (1.10) are respectively 0 ≤ x = o(n(1−α)/2) and 0 ≤ x = o(n(1−α)ρ/(4+2ρ)) as 
n → ∞, which are the best possible even (ηi)i≥1 are independent. Moreover, we show that (1.10) remains 
true if ψ-mixing coefficient ψ(n) decays in a polynomial decaying rate, in contrast to β-mixing sequences 
which does not share this property. For methodology, our approach is based on martingale approximation 
and self-normalized Cramér type moderate deviations for martingales due to Fan et al. [15].

The paper is organized as follows. Our main results are stated and discussed in Section 2. Applications 
and simulation study are given in Section 3. Proofs of results are deferred to Section 4.
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2. Main results

Recall that Fj and F∞
j+k be σ-fields generated respectively by (ηi)i≤j and (ηi)i≥j+k. We say that (ηi)i≥1

is ψ-mixing if the mixing coefficient

ψ(n) := sup
j

sup
A

{
∣∣P (A|Fj) − P (A)

∣∣/P (A) : A ∈ F∞
j+n} → 0 as n → ∞, (2.11)

see Doukhan [10]. It is known that continued fraction expansions of irrational numbers and certain Gibbs-
Markov dynamical systems are ψ-mixing, see Bazarova, Berkes and Horváth [1] and Denker and Kabluchko 
[7] respectively.

Our main result is the following self-normalized Cramér type moderate deviations for ψ-mixing sequences.

Theorem 2.1. Assume conditions (1.5), (1.7) and (1.8). Set α ∈ (0, 1). Let m = �nα	 and k = �n/(2m)	 be 
respectively the integers part of nα and n/(2m). Denote

δ2
n = mψ2(m) + kψ(m)

and

γn = k1/2ψ1/2(m) + nψ(m).

Assume also that δn, γn → 0 as n → ∞.

[i] If ρ ∈ (0, 1), then for all 0 ≤ x = o(n(1−α)/2),

∣∣∣∣∣ ln P (W o
n ≥ x)

1 − Φ (x)

∣∣∣∣∣ ≤ cρ

(
x2+ρ

n(1−α)ρ/2 + x2δ2
n + (1 + x)

( 1
n(1−α)ρ(2−ρ)/8(1 + xρ(2+ρ)/4)

+ γn
))

, (2.12)

where cρ depends only on c1, c2 and ρ.
[ii] If ρ = 1, then for all 0 ≤ x = o(n(1−α)/2),

∣∣∣∣∣ ln P (W o
n ≥ x)

1 − Φ (x)

∣∣∣∣∣ ≤ c

(
x3

n(1−α)/2 + x2δ2
n + (1 + x)

( 1
n(1−α)/8(1 + x3/4)

+ lnn

n(1−α)/2 + γn
))

, (2.13)

where c depends only on c1 and c2.

Notice that in the i.i.d. case, W o
n is self-normalized sums of k i.i.d. random variables, that is (Yi)1≤i≤k. 

According to the classical result of Jing, Shao and Wang [18], Cramér type moderate deviations holds for 
0 ≤ x = o(k1/2). Since the last range is equivalent to the range 0 ≤ x = o(n(1−α)/2), the ranges of validity 
for (2.12) and (2.13) coincide with the case of i.i.d., and, therefore, it is the best possible.

The following MDP result is a consequence of the last theorem.

Corollary 2.1. Assume the conditions of Theorem 2.1. Let an be any sequence of real numbers satisfying 
an → ∞ and an/n(1−α)/2 → 0 as n → ∞. Then for each Borel set B ⊂ R,
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− inf
x∈Bo

x2

2 ≤ lim inf
n→∞

1
a2
n

lnP

(
1
an

W o
n ∈ B

)
≤ lim sup

n→∞

1
a2
n

lnP

(
1
an

W o
n ∈ B

)
≤ − inf

x∈B

x2

2 ,

where Bo and B denote the interior and the closure of B, respectively.

If ψ(n) = O
(
n−(1+ρ)/α), then δ2

n = o
(
n−(1−α)ρ/2) and γn = o(n−(1−α)ρ/2). The following corollary is 

nonetheless worthy to state.

Corollary 2.2. Assume conditions (1.5), (1.7) and (1.8). Set α ∈ (0, 1). Assume also that

ψ(n) = O
(
n−(1+ρ)/α)

as n → ∞.

[i] If ρ ∈ (0, 1), then for all 0 ≤ x = o(n(1−α)/2),

∣∣∣∣∣ ln P (W o
n ≥ x)

1 − Φ (x)

∣∣∣∣∣ ≤ cρ

(
x2+ρ

n(1−α)ρ/2 + 1 + x

n(1−α)ρ(2−ρ)/8(1 + xρ(2+ρ)/4)

)
, (2.14)

where cρ depends only on c1, c2 and ρ.
[ii] If ρ = 1, then for all 0 ≤ x = o(n(1−α)/2),

∣∣∣∣∣ ln P (W o
n ≥ x)

1 − Φ (x)

∣∣∣∣∣ ≤ c

(
x3

n(1−α)/2 + (1 + x)
( 1
n(1−α)/8(1 + x3/4)

+ lnn

n(1−α)/2

))
, (2.15)

where c depends only on c1 and c2.

In particular, (2.14) and (2.15) together implies that for ρ ∈ (0, 1],

P (W o
n > x)

1 − Φ (x) = 1 + o(1) (2.16)

uniformly for 0 ≤ x = o(n(1−α)ρ/(4+2ρ)).

Chen et al. [4] (see Section 3 therein) showed that if β-mixing coefficient β(n) decays only polynomial 
slowly, then (2.16) is not valid at x = (C lnn)1/2 for sufficiently large constant C. However, Theorem 2.1
shows that the range of validity of (2.16) can be much wider when β-mixing is replaced by ψ-mixing.

Recall that in the i.i.d. case, W o
n is self-normalized sums of k i.i.d. random variables. By Remark 2 of 

Shao [27], the range of validity for (2.16) is also the best possible.

Remark 2.1. Notice that if (ηi)i≥1 satisfies conditions (1.5), (1.7) and (1.8), then (−ηi)i≥1 also satisfies the 

same conditions. Thus the assertions in Theorem 2.1 and Corollary 2.2 remain valid when 
P (W o

n ≥ x)
1 − Φ (x) is 

replaced by 
P (W o

n ≤ −x) .
Φ (−x)
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3. Applications

3.1. Application to simultaneous confidence intervals

Consider the problem of constructing simultaneous confidence intervals for the mean value μ of the 
random variables (ζi)i≥1. Assume that (ζi − μ)i≥1 satisfies the conditions (1.5), (1.7) and (1.8). Let

Tn =
∑k

j=1(Yj −mμ)√∑k
j=1(Yj − Y j)2

,

where m = �nα	, k = �n/(2m)	, Yj =
∑m

i=1 ζ2m(j−1)+i, 1 ≤ j ≤ k, and Y j = k−1∑k
j=1 Yj .

Corollary 3.1. Let δn ∈ (0, 1). Assume that

∣∣ ln δn
∣∣ = o

(
n(1−α)ρ/(2+ρ)). (3.17)

If ψ(n) = O
(
n−(1+ρ)/α), n → ∞, then

∑k
j=1 Yj

km
± Φ−1(1 − δn/2)

km

√√√√ k∑
j=1

(Yj − Y j)2

is 1 − δn conservative simultaneous confidence intervals for μ.

Proof. It is known that for all x ≥ 0,

P
(
Tn ≥ x

)
= P

⎛⎝ ∑k
j=1(Yj −mμ)√∑k
j=1(Yj −mμ)2

≥ x
( k

k − 1

)1/2( k

k + x2 − 1

)1/2
⎞⎠ ,

see Chung [5]. The last equality and (2.16) together implies that

P (Tn ≥ x)
1 − Φ (x) = 1 + o(1) (3.18)

uniformly for 0 ≤ x = o(n(1−α)ρ/(4+2ρ)). Clearly, the upper (δn/2)th quartile of a standard normal distri-
bution Φ−1(1 − δn/2) satisfies

Φ−1(1 − δn/2) = O(
√

| ln δn|),

which, by (3.17), is of order o(n(1−α)ρ/(4+2ρ)). Then applying the last equality to Tn, we complete the proof 
of Corollary 3.1. �

Similar results in statistical inference for hight-dimensional time series can be found in Chen et al. [4], 
where the authors have established simultaneous confidence intervals for functional dependence sequences.
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3.2. Application to continued fraction and simulation study

One of the well known example of ψ-mixing sequences is called continued fraction expansions of irrational 
numbers on (0, 1). For an irrational number x ∈ (0, 1), let

a1(x) = �1/x	, an+1(x) = a1(x ◦ Tn), n ≥ 1,

be the continued fraction expansion of x, where T is defined by T (x) = 1/x − �1/x	, that is the fractional 
part of 1/x. It is easy to see that

x = 1

a1(x) + 1

a2(x) + 1

a3(x) + 1
· · ·

The sequence (an(x))n≥1 with respect to the uniform measure in (0, 1) is ψ-mixing. Indeed, Lévy [19] proved 
that

ψ(n) = sup
j

sup
A

{
∣∣P (A|Fj) − P (A)

∣∣/P (A) : A ∈ F∞
j+n} ≤ Ce−λn (3.19)

with positive absolute constants C and λ, where Fj
1 and F∞

j+n be σ-fields generated respectively by 
(ai(x))1≤i≤j and (ai(x))i≥j+n. Denote by

G(E) = 1
ln 2

∫
E

1
1 + x

dx,

the Gauss measure on the class of Borel subsets B of (0, 1). It is known that (cf. Billingsley [3]) T is an 
ergodic transformation preserving the Gauss measure and thus (an(x))n≥1 is a stationary ergodic sequence 
with respect to the probability space ((0, 1), B, G). Clearly, the set {a1 = k} is the interval (1/(k + 1), 1/k]
and thus

G({a1 = k}) = 1
ln 2

1/k∫
1/(k+1)

1
1 + x

dx = 1
ln 2 ln

(
1 + 1

k(k + 2)

)
.

Hence, by the ergodic theorem we have for any function F : N → R, it holds

lim
N→∞

1
N

N∑
k=1

F (ak(x)) = 1
ln 2

∞∑
j=1

F (j) ln
(
1 + 1

j(j + 2)

)
a.e. (3.20)

whenever the series on the right hand side converges absolutely. Recently, Bazarova, Berkes and Horváth [1]
gave a central limit theorem for (an(x))n≥1. Next, we give self-normalized Cramér type moderate deviations.

Letting E denote expectation with respect to G, by (3.20), we have Ea1(x) = ∞ and E(a1(x))α < ∞
for any α ∈ (0, 1). Consider the self-normalized moderate deviation for the random variables (ζi)i≥1, where 
ζi = 3

√
ai(x) for any i. Then Eζ2+ρ

1 < ∞ for any ρ ∈ (0, 1) and

μ := Eζi = 1
ln 2

∞∑
j1/3 ln

(
1 + 1

j(j + 2)

)
. (3.21)
j=1
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Let

W o
n =

∑k
j=1(Yj −mμ)√∑k
j=1(Yj −mμ)2

,

where m = �nα	, k = �n/(2m)	, Yj =
∑m

i=1 ζ2m(j−1)+i, 1 ≤ j ≤ k. By (2.16), we have the following result.

Corollary 3.2. Set α ∈ (0, 1). Then for any ρ ∈ (0, 1),

P (W o
n ≥ t)

1 − Φ (t) = 1 + o(1) (3.22)

uniformly for 0 ≤ t = o(n(1−α)ρ/(4+2ρ)).

Next, we give a simulation study for the last corollary. We let n = 30, m = 1, 2, 3, 4 and consider 13 levels 
of t : t = 0, .1, .2, ..., 1.0, 1.2, 1.4. Let x be the discrete uniform distribution random variable, with possible 
values π/10000, 2π/10000, ....., 3182π/10000. Since π is an irrational number, x are irrational numbers. In 
W o

n , we take

μ = 1
ln 2

300∑
j=1

j1/3 ln
(
1 + 1

j(j + 2)

)
. (3.23)

Then P (W o
n ≥ t) ≈ #(W o

n : W o
n ≥ t)/3182. The following table shows the simulate rations P(W o

n≥t)
1−Φ(t) . From 

the table, we see that the interlacing self-normalized sums (that is m = 2, 3, 4) has a better performance 
than self-normalized sums (that is m = 1) when x close to 0. When x moves away from 0, the reverse is 
true.

m t = 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.2 1.4
1 1.11 1.13 1.15 1.16 1.17 1.16 1.11 1.08 1.03 0.96 0.90 0.75 0.53
2 1.01 1.02 1.02 1.02 1.02 1.01 1.00 0.99 0.94 0.88 0.78 0.57 0.42
3 1.00 1.03 1.04 1.07 1.06 1.06 1.04 1.01 0.98 0.92 0.85 0.67 0.48
4 1.01 1.00 0.99 0.96 0.94 0.89 0.82 0.74 0.67 0.56 0.46 0.29 0.13

4. Proofs

To shorten notations, for two real positive sequences (an)i≥1 and (bn)i≥1, write an 
 bn if there exists a 
positive constant C such that an ≤ Cbn holds for all large n, an � bn if bn 
 an, and an � bn if an 
 bn
and bn 
 an.

4.1. Preliminary lemmas

Let (Xi, Fi)i=0,...,n be a sequence of martingale differences defined on a probability space (Ω, F , P ). Set

S0 = 0, Sk =
k∑

i=1
Xi, k = 1, ..., n. (4.24)

Then (Sk, Fk)k=0,...,n is a martingale. Denote B2
n =

∑n
i=1 EX

2
i the variance of Sn. We assume the following 

conditions:
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(A1) There exists ςn ∈ [0, 14 ] such that

∣∣∣ n∑
i=1

E[X2
i |Fi−1] −B2

n

∣∣∣ ≤ ς2nB
2
n;

(A2) There exist ρ ∈ (0, 1] and τn ∈ (0, 14 ] such that

E[|Xi|2+ρ|Fi−1] ≤ (τnBn)ρ E[X2
i |Fi−1], 1 ≤ i ≤ n.

In practice, we usually have ςn, τn → 0 as n → ∞. In the case of sums of i.i.d. random variables with finite 
(2 + ρ)th moments, then it holds Bn � √

n, and thus conditions (A1) and (A2) are satisfied with ςn = 0
and τn = O(1/

√
n) as n → ∞.

Define the self-normalized martingales

Wn = Sn√∑n
i=1 X

2
i

. (4.25)

The proof of Theorem 2.1 is based on the following technical lemma due to Fan et al. [15] (see Corollary 
2.3 therein), which gives a Cramér type moderate deviation expansion for self-normalized martingales.

Lemma 4.1. Assume conditions (A1) and (A2). Denote

τ̂n(x, ρ) = τ
ρ(2−ρ)/4
n

1 + xρ(2+ρ)/4 . (4.26)

[i] If ρ ∈ (0, 1), then for all 0 ≤ x = o(τ−1
n ),∣∣∣∣∣ ln P (Wn ≥ x)

1 − Φ (x)

∣∣∣∣∣ ≤ cρ

(
x2+ρτρn + x2ς2n + (1 + x)

(
ςn + τ̂n(x, ρ)

))
,

where cρ depends only on ρ.
[ii] If ρ = 1, then for all 0 ≤ x = o(γ−1

n ),∣∣∣∣∣ ln P (Wn ≥ x)
1 − Φ (x)

∣∣∣∣∣ ≤ c

(
x3τn + x2ς2n + (1 + x)

(
ςn + τn| ln τn| + τ̂n(x, 1)

))
,

where c is a constant.

The following lemma is useful in the proof of Theorem 2.1, see Theorem 2.2 of Fan et al. [14]. Denote 
x+ = max{x, 0} and x− = (−x)+ the positive and negative parts of x, respectively.

Lemma 4.2. Assume that E|Xi|β < ∞ for a constant β ∈ (1, 2] and all i ∈ [1, n]. Write

G0
k(β) =

k∑
i=1

(
E
[
(X−

i )β |Fi−1
]
+ (X+

i )β
)
, k ∈ [1, n].

Then for all x, v > 0,

P
(
Sk ≥ x and G0

k(β) ≤ vβ for some k ∈ [1, n]
)
≤ exp

{
−C(β)

(x)β/(β−1)
}
, (4.27)
v
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where

C(β) = β
1

1−β
(
1 − β−1) . (4.28)

In the proof of Theorem 2.1, we also make use of the following lemma which can be found in Theorem 3 
of Doukhan [10].

Lemma 4.3. Suppose that X and Y are random variables which are F∞
j+n- and Fj-measurable, respectively, 

and that E|X| < ∞, E|Y | < ∞. Then∣∣∣EXY − EXEY
∣∣∣ ≤ ψ(n)E|X|E|Y |.

Moreover, since E|X| ≤ (E|X|2)1/2, it holds∣∣∣EXY − EXEY
∣∣∣ ≤ ψ(n) (EX2)1/2 (EY 2)1/2

provided that EX2 < ∞ and EY 2 < ∞.

4.2. Proof of Theorem 2.1

We first prove Theorem 2.1 for ρ ∈ (0, 1). Denote by Fl = σ{ηi, 1 ≤ i ≤ 2ml − m}. Then Yj is Fj-
measurable. Since Eηi = 0 for all i, by the definition of mixing coefficient (2.11), it is easy to see that for 
1 ≤ j ≤ k,

∣∣∣E[Yj |Fj−1]
∣∣∣ = ∣∣∣ m∑

i=1

(
E[η2m(j−1)+i|Fj−1] − Eη2m(j−1)+i

)∣∣∣
≤

m∑
i=1

ψ(m)E|η2m(j−1)+i|

≤
m∑
i=1

ψ(m)(E|η2m(j−1)+i|2+ρ)1/(2+ρ)

≤ mψ(m)c2, (4.29)

where the last inequality follows by condition (1.8) with s = 1. Thus

∣∣∣ k∑
j=1

E[Yj |Fj−1]
∣∣∣ ≤ kmψ(m)c2 ≤ nψ(m)c2.

By condition (1.8) and the inequality

(x + y)p ≤ 2p−1(xp + yp) for x, y ≥ 0 and p ≥ 1,

we have

E[|Yj − E[Yj |Fj−1]|2+ρ|Fj−1] ≤ 21+ρE[|Yj |2+ρ + |E[Yj |Fj−1]|2+ρ|Fj−1]

≤ 22+ρE[|Yj |2+ρ|Fj−1]

≤ 22+ρ(1 + ψ(m))E|Yj |2+ρ

≤ 22+ρ(1 + ψ(m))m1+ρ/2c2+ρ
2 . (4.30)
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The last inequality implies that

E[|Yj − E[Yj |Fj−1]|2|Fj−1] ≤ (E[|Yj − E[Yj |Fj−1]|2+ρ|Fj−1])2/(2+ρ)

≤ 22(1 + ψ(m))2/(2+ρ)mc22

≤ 22(1 + ψ(m))mc22. (4.31)

Similarly, by (1.8) and the assumption δn → 0 as n → ∞, it holds

E[|Yj − E[Yj |Fj−1]|2|Fj−1] = E[Y 2
j |Fj−1] − |E[Yj |Fj−1]|2

≥ (1 − ψ(m))EY 2
j − (mψ(m)c2)2

� 1
2(1 − ψ(m))mc21. (4.32)

Combining (4.30)-(4.32), we deduce that

E[|Yj − E[Yj |Fj−1]|2+ρ|Fj−1] 
 mρ/2E[|Yj − E[Yj |Fj−1]|2|Fj−1],
k∑

j=1
E[|Yj − E[Yj |Fj−1]|2|Fj−1] � n

and, by Lemma 4.3 and (4.29),

∣∣∣ k∑
j=1

E[|Yj − E[Yj |Fj−1]|2|Fj−1] − ES2
n

∣∣∣
≤
∣∣∣ k∑
j=1

E[|Yj − E[Yj |Fj−1]|2|Fj−1] −
k∑

j=1
EY 2

j

∣∣∣+ ∣∣∣ES2
n −

k∑
j=1

EY 2
j

∣∣∣
≤

k∑
j=1

∣∣∣E[Y 2
j |Fj−1] − EY 2

j

∣∣∣+ k∑
j=1

∣∣∣E[Yj |Fj−1]
∣∣∣2 + 2

k∑
j=1

j−1∑
l=1

∣∣∣EYjYl

∣∣∣
≤ kψ(m)EY 2

j + k(mψ(m)c2)2 + 2ψ(m)
k∑

j=1

j−1∑
l=1

E|Yj |E|Yl|

≤ 2nψ(m)c22 + nmψ2(m)c22 + 2ψ(m)
k∑

j=1

j−1∑
l=1

√
EY 2

j

√
EY 2

l

≤ 2nψ(m)c22 + nmψ2(m)c22 + 2nkψ(m)c22
≤ nmψ2(m)c22 + 4nkψ(m)c22.

Denote by

δ2
n = mψ2(m) + kψ(m).

Taking Xj = Yj −E[Yj |Fj−1], we find that the conditions (A1) and (A2) are satisfied with B2
n = ES2

n � n, 
ςn � δn and τn �

√
m/n � n−(1−α)/2. Applying Lemma 4.1 to

Wn :=
∑k

j=1(Yj − E[Yj |Fj−1])√∑k (Yj − E[Yj |Fj−1])2
,

j=1
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we have for all 0 ≤ x = o(n(1−α)/2),∣∣∣∣∣ ln P (Wn ≥ x)
1 − Φ (x)

∣∣∣∣∣ ≤ cρ

(
x2+ρ

n(1−α)ρ/2 + x2δ2
n + (1 + x)

( 1
n(1−α)ρ(2−ρ)/8(1 + xρ(2+ρ)/4)

+ δn

))
. (4.33)

Notice that, by Cauchy-Schwarz’s inequality,

∣∣∣ k∑
j=1

(
Yj − E[Yj |Fj−1]

)2 − k∑
j=1

Y 2
j

∣∣∣ ≤ 2
k∑

j=1
|YjE[Yj |Fj−1]| +

k∑
j=1

(E[Yj |Fj−1])2

≤ 2mψ(m)c2
k∑

j=1
|Yj | +

k∑
j=1

(
mψ(m)c2

)2
≤ 2k1/2mψ(m)c2

( k∑
j=1

Y 2
j

)1/2
+ km2ψ2(m)c22. (4.34)

When 
∑k

j=1 Y
2
j ≥ 1/4, both sides of the last inequality divided by 

∑k
j=1 Y

2
j , we get

∣∣∣∣∣
∑k

j=1
(
Yj − E[Yj |Fj−1]

)2∑k
j=1 Y

2
j

− 1

∣∣∣∣∣ ≤ 4k1/2mψ(m)c2 + 4km2ψ2(m)c22. (4.35)

By assumption γn → 0, we have nψ(m) → 0 which leads to k1/2mψ(m) → 0 as n → ∞. Thus (4.35) implies 
that ∣∣∣∣∣

∑k
j=1 Y

2
j∑k

j=1
(
Yj − E[Yj |Fj−1]

)2 − 1

∣∣∣∣∣ ≤ C0k
1/2mψ(m), (4.36)

where C0 is a positive constant. Hence, by the last inequality and the fact k1/2mψ(m) → 0, when 
∑k

j=1 Y
2
j ≥

1/4, it holds

∣∣∣Wn −W o
n

∣∣∣ = 1√∑k
j=1 Y

2
j

∣∣∣∣∣
k∑

j=1
(Yj − E[Yj |Fj−1])

√√√√ ∑k
j=1 Y

2
j∑k

j=1
(
Yj − E[Yj |Fj−1]

)2 −
k∑

j=1
Yj

∣∣∣∣∣
≤ 1√∑k

j=1 Y
2
j

(∣∣∣ k∑
j=1

(Yj − E[Yj |Fj−1]) −
k∑

j=1
Yj

∣∣∣+
+C0k

1/2mψ(m)
∣∣∣ k∑
j=1

(Yj − E[Yj |Fj−1])
∣∣∣)

≤ 3
k∑

j=1

∣∣∣E[Yj |Fj−1]
∣∣∣+ C0k

1/2mψ(m)
∑k

j=1 |Yj |√∑k
j=1 Y

2
j

.

Using Cauchy-Schwarz’s inequality, we have 
∑k

j=1 |Yj | ≤ k1/2
√∑k

j=1 Y
2
j . Thus, by (4.29) and the last 

inequality, ∣∣∣Wn −W o
n

∣∣∣ ≤ 3kmψ(m)c2 + C0kmψ(m)

≤ (3c2 + C0)nψ(m).
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Hence, when 
∑k

j=1 Y
2
j ≥ 1/4, we have ∣∣∣Wn −W o

n

∣∣∣ ≤ C1εn, (4.37)

where C1 is a positive constant and

εn = nψ(m).

Clearly, by assumption γn → 0, we have εn → 0 as n → ∞. Without loss of generality, we may assume that ∑k
j=1 EY

2
j = n; otherwise, we may consider (ηi/

√∑k
j=1 EY

2
j /n)1≤i≤n instead of (ηi)1≤i≤n. Then it follows 

that

P

(
k∑

j=1
Y 2
j <

1
4

)
≤ P

(
k∑

j=1
(Y 2

j − E[Y 2
j |Fj−1]) <

1
4 −

k∑
j=1

E[Y 2
j |Fj−1]

)

≤ P

(
k∑

j=1
(Y 2

j − E[Y 2
j |Fj−1]) <

1
4 − (1 − ψ(m))

k∑
j=1

EY 2
j

)

≤ P

(
k∑

j=1
Y 2
j − E[Y 2

j |Fj−1] < −1
2n
)
. (4.38)

Denote Zj = E[Y 2
j |Fj−1] − Y 2

j . Notice that

Zj ≤ E[Y 2
j |Fj−1] ≤ (1 − ψ(m))EY 2

j � m,

By an argument similar to the proof of (4.30), we have

E[|Zj |1+ρ/2|Fj−1] 
 m1+ρ/2.

The last two inequalities implies that

k∑
i=1

(
E
[
(Z−

i )1+ρ/2|Fi−1
]
+ (Z+

j )1+ρ/2
)
≤ C2km

1+ρ/2,

where C2 is a positive constant. Applying Lemma 4.2 to (Zj)1≤j≤k with β = 1 + ρ/2, x = n/2 and vβ =
C2km

β , we get, from (4.38),

P

(
k∑

j=1
Y 2
j <

1
4

)
≤ P

(
k∑

j=1
Zj >

1
2n
)

≤ exp
{
− C(ρ)n1−α

}
, (4.39)

where C(ρ) is a positive constant. For the last inequality, we make use of the fact that m = �nα	, k =
�n/(2m)	 and

(x
v

)β/(β−1)
=
( n/2
C

1/β
2 k1/βm

)β/(β−1)
�
( n

n(1−α)/βnα

)β/(β−1)
= n1−α.

Using (4.37), we obtain the following upper bound for the relative error of normal approximation: for all 
0 ≤ x = o(n(1−α)/2),
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P (W o
n ≥ x)

1 − Φ (x) =
P (W o

n ≥ x,
∑k

j=1 Y
2
j ≥ 1/4) + P (W o

n ≥ x,
∑k

j=1 Y
2
j < 1/4)

1 − Φ (x)

≤
P (Wn ≥ x− C1εn,

∑k
j=1 Y

2
j ≥ 1/4) + P (

∑k
j=1 Y

2
j < 1/4)

1 − Φ (x)

≤ P (Wn ≥ x− C1εn)
1 − Φ (x− C1εn)

1 − Φ (x− C1εn)
1 − Φ (x) +

P (
∑k

j=1 Y
2
j < 1/4)

1 − Φ (x) .

Using the inequality

1 − Φ (x) ≥ 1√
2π(1 + x)

e−x2/2 for all x ≥ 0

(cf. (1.6) of [11]), we deduce that for all x ≥ 0 and εn = o(1),

1 − Φ (x− C1εn)
1 − Φ (x) = 1 +

∫ x

x−C1εn
1√
2π e

−t2/2dt

1 − Φ (x)

≤ 1 +
1√
2π e

−(x−C1εn)2/2C1εn
1√

2π(1+x)e
−x2/2

≤ 1 + C1(1 + x)εneC1xεn

≤ eC1(1+x)εn . (4.40)

By (4.33), (4.39) and (4.40), we have for all 0 ≤ x = o(n(1−α)/2),

P (W o
n ≥ x)

1 − Φ (x)

≤ exp
{
Cρ

(
x2+ρ

n(1−α)ρ/2 + x2δ2
n + (1 + x)

( 1
n(1−α)ρ(2−ρ)/8(1 + xρ(2+ρ)/4)

+ δn + εn

))}

+ 1
1 − Φ (x) exp

{
− C(ρ)n1−α

}
≤ exp

{
C ′

ρ

(
x2+ρ

n(1−α)ρ/2 + x2δ2
n + (1 + x)

( 1
n(1−α)ρ(2−ρ)/8(1 + xρ(2+ρ)/4)

+ γn

))}
,

where

γn = δn + εn � k1/2ψ1/2(m) + nψ(m).

Similar, we have the following lower bound for the relative error of normal approximation: for all 0 ≤ x =
o(n(1−α)/2),

P (W o
n ≥ x)

1 − Φ (x)

≥ exp
{

− C ′
ρ

(
x2+ρ

n(1−α)ρ/2 + x2δ2
n + (1 + x)

( 1
n(1−α)ρ(2−ρ)/8(1 + xρ(2+ρ)/4)

+ γn

))}
.

Combining the upper and lower bounds of P(W o
n≥x)

1−Φ(x) together, we complete the proof of Theorem 2.1 for 
ρ ∈ (0, 1).
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For the case ρ = 1, the assertion of Theorem 2.1 follows by a similar argument, but with δn replaced by 
lnn

n(1−α)/2 +δn in (4.33) and accordingly in the subsequent statements. This completes the proof of Theorem 2.1.

4.3. Proof of Corollary 2.1

In the proof of Corollary 2.1, we will make use of the following well-known inequalities:

1√
2π(1 + x)

e−x2/2 ≤ 1 − Φ(x) ≤ 1√
π(1 + x)

e−x2/2, x ≥ 0. (4.41)

First, we show that

lim sup
n→∞

1
a2
n

lnP

(
1
an

W o
n ∈ B

)
≤ − inf

x∈B

x2

2 . (4.42)

When B = ∅, the last inequality is obvious. So, we assume that B �= ∅. For a given Borel set B ⊂ R, let 
x0 = infx∈B |x|. Clearly, we have x0 ≥ infx∈B |x|. Therefore, by Theorem 2.1,

P

(
1
an

W o
n ∈ B

)
≤ P

( ∣∣Wn

∣∣ ≥ anx0

)
≤ 2
(
1 − Φ (anx0)

)
exp

{
cρ

(
(anx0)2+ρ

n(1−α)ρ/2 + (anx0)2 δ2
n

+(1 + anx0)
( 1
n(1−α)ρ(2−ρ)/8(1 + (anx0)ρ(2+ρ)/4)

+ γn

))}
.

Using (4.41), we get

lim sup
n→∞

1
a2
n

lnP

(
1
an

W o
n ∈ B

)
≤ −x2

0
2 ≤ − inf

x∈B

x2

2 ,

which gives (4.42).
Next, we show that

lim inf
n→∞

1
a2
n

lnP

(
1
an

W o
n ∈ B

)
≥ − inf

x∈Bo

x2

2 . (4.43)

When Bo = ∅, the last inequality is obvious. So, we assume that Bo �= ∅. For any given ε1 > 0, there exists 
an x0 ∈ Bo, such that

0 <
x2

0
2 ≤ inf

x∈Bo

x2

2 + ε1.

Without loss of generality, we assume that x0 > 0. For x0 ∈ Bo and all small enough ε2 ∈ (0, x0), it holds 
(x0 − ε2, x0 + ε2] ⊂ B. Obviously, we have

P

(
1
an

W o
n ∈ B

)
≥ P

(
W o

n ∈ (an(x0 − ε2), an(x0 + ε2)]
)

= P
(
W o

n ≥ an(x0 − ε2)
)
− P

(
W o

n ≥ an(x0 + ε2)
)
.

By Theorem 2.1, it is easy to see that
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lim
n→∞

P
(
W o

n ≥ an(x0 + ε2)
)

P
(
W o

n ≥ an(x0 − ε2)
) = 0.

Then, by (4.41), it follows that

lim inf
n→∞

1
a2
n

lnP

(
1
an

W o
n ∈ B

)
≥ −1

2(x0 − ε2)2.

Now, letting ε2 → 0, we have

lim inf
n→∞

1
a2
n

lnP

(
1
an

W o
n ∈ B

)
≥ −x2

0
2 ≥ − inf

x∈Bo

x2

2 − ε1.

Because ε1 can be arbitrarily small, we get (4.43). Combining (4.42) and (4.43) together, we complete the 
proof of Corollary 2.1.
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