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a b s t r a c t

A least product relative error criterion is proposed for multiplicative regression models.
It is invariant under scale transformation of the outcome and covariates. In addition,
the objective function is smooth and convex, resulting in a simple and uniquely defined
estimator of the regression parameter. It is shown that the estimator is asymptotically
normal and that the simple plug-in variance estimation is valid. Simulation results confirm
that the proposedmethodperformswell. An application to body fat calculation is presented
to illustrate the new method.
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1. Introduction

In regression analysis, the least squares (LS) and least absolute deviation (LAD) are the most commonly used criteria
based on absolute errors [10,8]. In some situations, however, criteria based on relative errors that are scale invariant and
less sensitive to outliers are more desirable [5,4,3,13,6,1,14]. Consider the following multiplicative regression model

Yi = exp(X⊤

i β)ϵi, i = 1, . . . , n, (1)

where Yi is the response variable, Xi is the p-vector of explanatory variables with the first component being 1 (intercept), β
is the corresponding p-vector of regression parameters with the first component being the intercept and ϵi is the error term,
which is strictly positive. An additional constraint on ϵ needs to be imposed so that the first component of β (intercept)
becomes identifiable. Model (1) is also known as the accelerated failure time (AFT) model in the survival analysis literature.

For themultiplicative regressionmodel (1), Chen et al. [1] give a convincing argument that a proper criterion should take
into account both types of relative errors: one relative to the response and the other relative to the predictor of the response.
A criterion with only one type of relative errors often leads to biased estimation. They introduced the least absolute relative
error (LARE) estimation for model (1) by minimizing

LAREn(β) ≡

n
i=1

Yi − exp(X⊤

i β)

Yi

+ Yi − exp(X⊤

i β)

exp(X⊤

i β)

 , (2)
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the sum of the two types of the relative errors. The LARE estimation enjoys the robustness and scale-free property. However,
like the LAD, the LARE criterion function is nonsmooth, and, as a result, the limiting variance of the corresponding estimator
involves the density of the error. Furthermore, its computation is slightly more complicated than linear programming.

It would be desirable to develop a criterion function which not only incorporates the relative error terms, but also is
smooth and convex. The latter would ensure the numerical uniqueness of the resulting estimator and the consistency of the
usual plug-in sandwich-type variance estimation. The main purpose of this paper is to introduce a simple, smooth, convex
and interpretable criterion function and to develop a related inference procedure.

The rest of the paper is organized as follows. Section 2 introduces the least product relative error (LPRE) criterion and
extension of the LPRE to a general class of relative error criteria, along with simple inference procedures, including point
and variance estimation, hypothesis testing and related large sample properties. Sections 3 and 4 contain simulation results
and a real example. Some discussion and concluding remarks are given in Section 5.

2. Method

The least absolute relative error (LARE) criterion (2) of Chen et al. [1] is the result of adding together the two relative error
terms. In this paper, we consider multiplying the two relative error terms and propose the following least product relative
error (LPRE) criterion

LPREn(β) ≡

n
i=1

Yi − exp(X⊤

i β)

Yi

× Yi − exp(X⊤

i β)

exp(X⊤

i β)

 . (3)

Note that the summand can bewritten as {Yi−exp(X⊤

i β)}2/{Yi exp(X⊤

i β)}. Thus, itmay be viewed as a symmetrized version
of the squared relative errors [6].

A simple algebraic manipulation leads to the following alternative expression

LPREn(β) ≡

n
i=1


Yi exp(−X⊤

i β) + Y−1
i exp(X⊤

i β) − 2

, (4)

fromwhich we can see major advantages. First, the criterion function is infinitely differentiable. Second, it is strictly convex
since the exponential function is strictly convex. As a result, finding theminimizer is equivalent to finding the root of its first
derivative. The usual asymptotic properties can therefore be derived by a local quadratic expansion and standard inference
methods for M-estimation are applicable.

2.1. Estimation

We now deal with parameter estimation and develop the corresponding theory. Our estimator for β will be denoted
by β̂n and defined as the minimizer of (3) or, equivalently, (4). The strict convexity of (4) entails that the minimizer, if it
exists, must be unique. Assume the design matrix

n
i=1 XiX⊤

i is nonsingular. This is a minimum condition for the purpose
of identifiability. Then, LPREn(β) is strictly convex, and, as ∥β∥ → ∞,

n
i=1(X

⊤

i β)2 → ∞, implying max{|X⊤

i β| : i =

1, . . . , n} → ∞. It follows that LPREn(β) → ∞ as ∥β∥ → ∞. And the following theorem holds.

Theorem 1. If
n

i=1 E(XiX⊤

i ) is nonsingular, then β̂n exists and is unique.

Remark 1. The nonsingularity of
n

i=1 E(XiX⊤

i ) is also a necessary and sufficient condition for the least squares estimator
to be unique.

We next establish asymptotic properties for β̂n under suitable regularity conditions. For notational simplicity, we assume
that (X⊤, Y )⊤, (X⊤

i , Yi)
⊤, i = 1, . . . , n are independent and identically distributed. It allows for heteroskedasticity in that it

does not require the error term ϵ to be independent of the explanatory variable X . We will use the following conditions for
the development of the asymptotic theory.

Condition C1. There exists δ > 0 such that E{(ϵ + 1/ϵ) exp(δ∥X∥)} < ∞.
Condition C1*. There exists δ > 0 such that E{(ϵ + 1/ϵ)2 exp(δ∥X∥)} < ∞.
Condition C2. The expected design matrix, E(XX⊤), is positive definite.
Condition C3. The error terms satisfy E(ϵ|X) = E(1/ϵ|X).
Condition C1 is almost minimal for the criterion function (4) to have a finite expectation in a neighborhood of the true

parameter β0. It also ensures that the limit of (4) is twice differentiable with respect to β and that the differentiation and
expectation is interchangeable. Condition C2 ensures that the design matrix is nonsingular, a minimal requirement for the
regression parameter to be identifiable. Under C1 and C2, the limiting criterion function is strictly convex in a neighborhood
of β0. Condition C3 is equivalent to that the derivative of the criterion function at β0 has mean 0, again a minimal condition
for the resulting estimator to be asymptotically unbiased. The strict convexity and the asymptotic unbiasedness ensure that
the estimator is consistent. Condition C1* is simply a stronger version of C1 for the asymptotic normality to hold.
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Theorem 2. Under Conditions C1, C2 and C3, β̂n is strongly consistent.

Proof. Under C1, C2 and C3, one can show that LPREn(β)/n converges to E{LPREn(β)}/n in a small neighborhood of β0

and that both are convex. Thus, by Theorem 10.8 in [9], β̂n, the minimizer of LPREn(β), converges to β0, the minimizer of
E{LPREn(β)}.

The next theorem establishes the asymptotic normality and the validity of the plug-in variance estimation. Let D =

E{XX⊤(ϵ + 1/ϵ)} and V = E{XX⊤(ϵ − 1/ϵ)2}. Define their plug-in estimators D̂ = (1/n)
n

i=1 XiX⊤

i {exp(X⊤

i β̂n)/Yi +

Yi/ exp(X⊤

i β̂n)} and V̂ = (1/n)
n

i=1 XiX⊤

i {Yi/ exp(X⊤

i β̂n) − exp(X⊤

i β̂n)/Yi}
2.

Theorem 3. Under Conditions C1∗, C2 and C3,
√
n(β̂n − β0) is asymptotically normal with mean 0 and covariance matrix

D−1VD−1, which is consistently estimated by D̂−1V̂ D̂−1.

Proof. Since β̂n is consistent, by the Taylor expansion,

β̂n − β0 = D̂−1
∗

1
n

n
i=1

Xi


Yi

exp(X⊤

i β0)
−

exp(X⊤

i β0)

Yi


,

where D̂∗ = (1/n)
n

i=1 XiX⊤

i {exp(X⊤

i β∗)/Yi + Yi/ exp(X⊤

i β∗)} and β∗ lies in between the true parameter β0 and the LPRE
estimate β̂n. The desired results follow from the law of large numbers and the central limit theorem.

It can be shown that when the error ϵ has density

f (x) = c exp(−x − 1/x − log x + 2)I(x > 0), (5)

where c is the normalizing constant, D = V becomes the Fisher information. It then follows that β̂n is asymptotically
efficient.

2.2. Hypothesis testing

We now turn to hypothesis testing. Although the asymptotic theory developed in the preceding subsection can be used
to construct Wald-type testing statistics, we will focus on an approach that is based directly on the LPRE criterion. For
simplicity, we assume homogeneous errors, i.e. ϵ is independent of X and consider the following null hypothesis

H0 : β ∈ Ω0 = {b ∈ Rp
: H⊤b = 0}, (6)

where H = (h1, . . . , hq) and hj, j = 1, . . . , q are p-vectors that are linearly independent and lie in the linear space spanned
by the column vectors of the design matrix X .

Let

Mn ≡ min
β∈Ω0

LPREn(β) − min
β∈Rp

LPREn(β). (7)

Through the usual quadratic expansion, we can arrive at an asymptotic ANOVA-type decomposition. The asymptotic
normality can then be applied to show that, under the null hypothesis, Mn converges in distribution to Kχ2

q , where
K = 4E(ϵ)/E{(ϵ − 1/ϵ)2} and χ2

q is the central chi-squared distribution with q degree of freedom. The constant K can
be estimated consistently by K̂ = 4

n
i=1{Yi exp(−X⊤

i β̂n)}/
n

i=1{Yi exp(−X⊤

i β̂n) − 1/Yi exp(X⊤

i β̂n)}
2. Therefore we can

use Mn/K̂ as the testing statistic with χ2
q,1−α as the cut-off point, where α is a given nominal significance level.

2.3. General relative error criteria

A general relative error (GRE) criterion can be constructed:

GREn(β) ≡

n
i=1

g
Yi − exp(X⊤

i β)

Yi

 , Yi − exp(X⊤

i β)

exp(X⊤

i β)

 , (8)

where g(a, b) is a bivariate function satisfying certain regularity conditions. Taking g(a, b) = a + b, it becomes the
LARE criterion function while g(a, b) = ab, it becomes the LPRE of the preceding section. One may also consider
g(a, b) = max{a, b} [13]. Note that all three criteria here are symmetric functions. A possible non-symmetric one could
be g(a, b) = a + exp(b), where we pay more attention to the relative error of b and more heavily penalize large value of b
compared to a.

The derivative of GREn with respect to β is denoted as

Sn(β) =

n
i=1

φ

Yi − exp(X⊤

i β)

Yi

 , Yi − exp(X⊤

i β)

exp(X⊤

i β)

 Xi.
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Its expectation with β = β0 becomes 0 when

E

φ
1 − ϵ−1

 , |ϵ − 1|

|X


= 0. (9)

With the LARE and the LPRE as special cases, we have φ(
1 − ϵ−1

 , |ϵ − 1|) = (1/ϵ + ϵ){I(ϵ ≤ 1) − I(ϵ ≥ 1)} and
1/ϵ − ϵ, respectively. Then, in the special cases of LARE and LPRE, the expression (9) takes the forms E([(1/ϵ + ϵ){I(ϵ ≤ 1)
− I(ϵ ≥ 1)}]|X) = 0 and E(1/ϵ − ϵ|X) = 0 respectively, when log(ϵ) has a density function symmetric around 0.

Let β̂n be a minimizer of the criterion function (8). It follows that, under (9), β̂n is asymptotically unbiased. In fact we
have the following result concerning the limiting distribution of

√
n(β̂n − β0).

Theorem 4. Under (9) and additional regularity conditions concerning the nonsingularity of the designmatrix and finite moment
condition on the error,

√
n(β̂n − β0) is asymptotically normal with mean 0 and covariance matrix (1/a2)JV−1 where J =

E[{φ(|ϵ − 1|, |1 − 1/ϵ|)}2], V = E(XX⊤) and constant a satisfies E{φ(|1 − ϵ exp(−c)|, |ϵ−1 exp(c) − 1|)} = ac + o(|c|), as
|c| → 0.

The proof of Theorem 4 is similar to that of Theorem 1 in [1] and is omitted. In general, the asymptotic variance of
β̂n, the minimizer of GREn(β), may involve the density function of the error. To avoid density estimation, a distributional
approximation based on random weighting can be applied. Let w1, w2, · · ·, wn be a sequence of i.i.d. nonnegative random
variables independent of {(X⊤

i , Yi)} with E(w1) = Var(w1) = 1. Define

GRE∗

n(β) ≡

n
i=1

wig
Yi − exp(X⊤

i β)

Yi

 , Yi − exp(X⊤

i β)

exp(X⊤

i β)

 , (10)

and let β̂∗
n be aminimizer of (10). Similar to Proposition 1 in [1], it can be shown that, given the data {(X⊤

i , Yi) : i = 1, . . . , n},
the asymptotic conditional distribution of

√
n(β̂∗

n − β̂n) is N(0, (1/a2)JV−1), which is exactly the asymptotic distribution of
√
n(β̂n −β0). Thence, the numerical procedure for the randomweighting distributional approximation is as follows: fix the

samples {(X⊤

i , Yi) : i = 1, . . . , n},

(1) Generate random weights wi, i = 1, . . . , n, independently from a preset weight distribution, for example, the
exponential distribution with mean 1;

(2) Obtain estimate β̂∗
n by minimizing GRE∗

n(β) over β;
(3) Repeat steps (1) and (2) for N times, and obtain N estimators of β , saying {β̂∗

nk, k = 1, . . . ,N}.
(4) Empirical distribution and empirical variance of {β̂∗

nk, k = 1, . . . ,N} are used to approximate the distribution and
variance of β̂n, respectively.

If the error ϵ has a density function as follows:

f (x) = c exp{−g(|1 − x|, |1 − x−1
|) − log x}I(x > 0), (11)

where c is a normalizing constant, then the estimator β̂n is asymptotically efficient. Density f (x) in (11) belongs to a class
of inverse transformation invariant densities, meaning that if a random variable ϵ is distributed with density f (x), then
1/ϵ is equal in distribution to ϵ. Fig. 1 shows densities of some particular choices of function g . One can see that the error
distribution with which the product criterion is efficient has heavier tails than others, indicating that the product criterion
is more robust in practical application.

Based on general relative error criterion (8), a general test statistic to test hypothesis (6) can be constructed as

Mn ≡ min
β∈Ω0

GREn(β) − min
β∈Rp

GREn(β). (12)

Especially, when the error terms follow the distribution described in (11), Mn is identical to the log-likelihood ratio test
statistic. The following theorem demonstrates the asymptotic distribution ofMn.

Theorem 5. Under (6) and additional regularity conditions,

Mn →
J
2a

χ2
q in distribution,

as n → ∞, where χ2
q refers to the chi-square distribution with q degrees of freedom.

The proof of Theorem 5 is similar to that of Theorem 1 in [2] and is also omitted. In general, the asymptotic distribution
of Mn may involve the density of the errors. The plug-in method involving density estimation can be inaccurate and
computationally troublesome. In this case, a random weighting method, as used by Chen et al. [2], Wang et al. [11], Xiao
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Fig. 1. Plot of four densities.

et al. [12] can be applied. For illustration, let β̂c and β̂∗
c be the minimizers of GREn(β) and GRE∗

n(β) under H0 defined in (6)
respectively. We define the following testing statistic

M∗

n =


GRE∗

n(β̂
∗

c ) − GRE∗

n(β̂
∗

n )


−


GRE∗

n(β̂c) − GRE∗

n(β̂n)

. (13)

Following the lines of the proof of Theorem 4 in [12], we can show that, conditional on the data {(X⊤

i , Yi) : i = 1, . . . , n},
the asymptotic distribution of M∗

n is (J/2a)χ2
q , which allows us to use M∗

n to approximate the distribution of Mn under the
null and hence avoid the estimation of a.

3. Simulation

Simulation studies are conducted to compare the finite sample performance of the proposed LPRE, the LARE, the LS and
the LAD. The data are generated from the model

Y = exp(β0 + β1X1 + β2X2)ϵ, (14)

where X1 and X2 are two covariates following the standard normal distribution N(0, 1) with correlation coefficient ρ =

0 or 0.6. We take (β0, β1, β2)
⊤

= (1, 1, 1)⊤. We consider five error distributions: the distribution with which the
LARE estimator is efficient; the distribution with which the LPRE estimator is efficient; the exponential of the uniform
distribution on (−2, 2); the log-standard normal distribution; and the uniform distribution on (0.5, a) with a chosen such
that E(ϵ) = E(1/ϵ). Note that the first four error distributions are such that 1/ϵ is distributed same as ϵ. The sample size
n is 200. The variance estimation for the LARE and the LAD is based on random weighting with resampling size N = 500,
while the variance estimation for the LPRE and the LS is based on the plug-in rule. The LS and LAD estimates are obtained by
minimizing

n
i=1(log Yi − β0 − β1X1i − β2X2i)

2 and
n

i=1 | log Yi − β0 − β1X1i − β2X2i|, respectively. The simulation results
are based on 1000 replications.
It is seen fromTable 1 that the LPRE performs considerably better than the LARE, the LS and the LADwhen log(ϵ) is uniformly
distributed on (−2, 2). With log-normal error distribution, the LPRE performs as well as the LARE and is comparable to the
LS. With the uniform error distribution, the LPRE performs slightly better than the LS, and much better than the LARE and
the LAD. The variance estimation of the LPRE gives accurate coverage probability in the study.

The performance of the proposed test statisticMn is evaluated with the product relative error criterion. We consider two
null hypotheses H0 : β2 = 0 and H0 : β1 = β2 = 0. Tables 2 and 3 present the empirical significance levels and powers
with n = 200 when ϵ follows the distributions with which the LPRE and the LARE are respectively efficient, the log-uniform
distribution on (−2, 2) and the log-standard normal distribution. It is seen that the empirical significance levels are close
to the nominal levels, suggesting that Mn is adequate. Under H0 : β2 = 0 and nominal level 0.05, the power increases from
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Table 1
Comparison among various approaches with β = (1, 1, 1)⊤ .

ρ ϵ ∼ f1(·) log(ϵ) ∼ Unif (−2, 2) log(ϵ) ∼ N(0, 1) ϵ ∼ f2(·) ϵ ∼ Unif (0.5, a)
β̂0 β̂1 β̂2 β̂0 β̂1 β̂2 β̂0 β̂1 β̂2 β̂0 β̂1 β̂2 β̂0 β̂1 β̂2

0 LPRE BIAS 0.007 0.004 0.009 0.001 0.001 0.004 0.002 0.001 0.001 0.004 0.005 0.004 0.002 0.000 0.001
SE 0.037 0.037 0.037 0.067 0.067 0.067 0.074 0.075 0.076 0.045 0.045 0.045 0.023 0.023 0.023
SEE 0.036 0.036 0.036 0.067 0.067 0.067 0.075 0.075 0.075 0.045 0.045 0.045 0.023 0.023 0.023
CP 0.943 0.942 0.955 0.952 0.952 0.952 0.948 0.949 0.945 0.945 0.956 0.947 0.948 0.950 0.950

LARE BIAS 0.001 0.002 0.001 0.001 0.002 0.000 0.004 0.004 0.002 0.001 0.001 0.001 0.044 0.000 0.001
SE 0.032 0.033 0.034 0.077 0.075 0.073 0.076 0.073 0.076 0.047 0.048 0.047 0.035 0.034 0.034
SEE 0.033 0.034 0.034 0.075 0.075 0.075 0.073 0.072 0.072 0.047 0.047 0.047 0.032 0.032 0.033
CP 0.945 0.944 0.951 0.944 0.943 0.959 0.926 0.928 0.931 0.936 0.927 0.934 0.942 0.943 0.943

LS BIAS 0.001 0.002 0.001 0.001 0.002 0.000 0.004 0.003 0.002 0.004 0.005 0.005 0.004 0.005 0.001
SE 0.035 0.035 0.037 0.083 0.081 0.078 0.071 0.069 0.072 0.047 0.047 0.047 0.025 0.025 0.025
SEE 0.035 0.035 0.035 0.081 0.080 0.080 0.070 0.069 0.070 0.045 0.045 0.045 0.025 0.026 0.026
CP 0.945 0.952 0.926 0.948 0.937 0.951 0.950 0.939 0.935 0.939 0.941 0.950 0.945 0.946 0.947

LAD BIAS 0.001 0.002 0.001 0.001 0.004 0.001 0.004 0.003 0.001 0.009 0.008 0.010 0.053 0.001 0.002
SE 0.033 0.034 0.034 0.143 0.140 0.135 0.090 0.085 0.090 0.061 0.060 0.058 0.037 0.037 0.036
SEE 0.036 0.038 0.038 0.145 0.144 0.144 0.093 0.094 0.094 0.063 0.062 0.062 0.040 0.040 0.039
CP 0.938 0.915 0.921 0.897 0.868 0.888 0.917 0.907 0.906 0.899 0.887 0.906 0.900 0.902 0.901

0.6 LPRE BIAS 0.002 0.002 0.001 0.001 0.001 0.002 0.003 0.001 0.000 0.001 0.002 0.003 0.001 0.001 0.001
SE 0.037 0.068 0.069 0.065 0.123 0.125 0.077 0.142 0.142 0.046 0.083 0.083 0.023 0.041 0.041
SEE 0.036 0.066 0.066 0.067 0.122 0.122 0.074 0.136 0.136 0.045 0.082 0.082 0.023 0.041 0.041
CP 0.938 0.950 0.946 0.960 0.941 0.947 0.936 0.941 0.940 0.942 0.945 0.947 0.940 0.955 0.959

LARE BIAS 0.002 0.000 0.001 0.002 0.000 0.000 0.002 0.002 0.000 0.001 0.002 0.002 0.042 0.002 0.001
SE 0.033 0.061 0.061 0.073 0.137 0.139 0.076 0.140 0.139 0.050 0.091 0.092 0.035 0.061 0.061
SEE 0.034 0.063 0.063 0.075 0.136 0.136 0.072 0.130 0.129 0.050 0.093 0.093 0.034 0.061 0.061
CP 0.962 0.961 0.950 0.953 0.934 0.942 0.933 0.921 0.929 0.935 0.947 0.946 0.739 0.950 0.950

LS BIAS 0.002 0.002 0.000 0.002 0.000 0.001 0.002 0.001 0.000 0.001 0.002 0.003 0.003 0.001 0.001
SE 0.036 0.066 0.066 0.079 0.149 0.152 0.073 0.133 0.132 0.046 0.083 0.084 0.023 0.041 0.041
SEE 0.035 0.065 0.065 0.082 0.150 0.150 0.071 0.130 0.130 0.046 0.084 0.083 0.023 0.042 0.042
CP 0.941 0.948 0.948 0.963 0.948 0.942 0.942 0.948 0.948 0.940 0.948 0.950 0.936 0.957 0.961

LAD BIAS 0.002 0.001 0.000 0.002 0.001 0.001 0.001 0.000 0.001 0.001 0.002 0.003 0.010 0.001 0.001
SE 0.035 0.063 0.064 0.082 0.154 0.158 0.074 0.136 0.134 0.048 0.086 0.087 0.026 0.043 0.043
SEE 0.034 0.063 0.063 0.085 0.155 0.155 0.073 0.133 0.133 0.048 0.087 0.087 0.024 0.044 0.044
CP 0.946 0.952 0.953 0.961 0.948 0.940 0.943 0.940 0.950 0.949 0.953 0.947 0.901 0.955 0.962

f1(x) = c1 exp(−|1 − x| − |1 − x−1
| − log x)I(x > 0);

f2(x) = c2 exp(−x − x−1
− log x + 2)I(x > 0).

Table 2
Type I error and power with the null hypothesis (β0, β1, β2) = (1, 1, 0).

ρ β log(ϵ) ∼ Unif (−2, 2) log(ϵ) ∼ N(0, 1) ϵ ∼ f1(·) ϵ ∼ f2(·)
α = 0.05 α = 0.01 α = 0.05 α = 0.01 α = 0.05 α = 0.01 α = 0.05 α = 0.01

0 (1.0, 1.0, 0.0) 0.053 0.015 0.049 0.009 0.057 0.013 0.053 0.006
(1.0, 1.0, 0.1) 0.338 0.157 0.280 0.120 0.593 0.350 0.772 0.569
(1.0, 1.0, 0.2) 0.823 0.637 0.745 0.555 0.987 0.965 0.999 0.997
(1.0, 1.0, 0.3) 0.984 0.955 0.980 0.921 1.000 1.000 1.000 1.000
(1.0, 1.0, 0.4) 1.000 0.999 0.998 0.991 1.000 1.000 1.000 1.000

0.6 (1.0, 1.0, 0.0) 0.056 0.013 0.063 0.013 0.056 0.013 0.061 0.013
(1.0, 1.0, 0.1) 0.130 0.042 0.116 0.032 0.202 0.086 0.346 0.130
(1.0, 1.0, 0.2) 0.376 0.180 0.336 0.151 0.670 0.407 0.854 0.665
(1.0, 1.0, 0.3) 0.711 0.471 0.627 0.377 0.942 0.838 0.991 0.967
(1.0, 1.0, 0.4) 0.900 0.764 0.836 0.635 0.999 0.990 1.000 1.000

α represents the nominal significance level.

0.05 to 1.0 as β2 varies from 0.0 to 0.4. In other words, the power increases as the parameters move away from the null
hypothesis, a common phenomenon in hypothesis testing.

4. Real example

We apply the proposed method for the analysis of the body fat data. The data contain various body measurement
indices related with percentage of body fat for 252men, which are available at http://lib.stat.cmu.edu/datasets/bodyfat; [7].
We select 12 explanatory variables: age (X1), height4/weight2(X2) and 10 other body circumference indexes (neck, chest,
abdomen, hip, thigh, knee, ankle, biceps, forearm and wrist, denoted by Xi, i = 3, . . . , 12). We note that X2 is a transform
of the well-known body mass index (BMI) defined as the ratio of weight to height2. The sample size n is 251. The response

http://lib.stat.cmu.edu/datasets/bodyfat
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Table 3
Type I error and power with the null hypothesis (β0, β1, β2) = (1, 0, 0).

ρ β log(ϵ) ∼ Unif (−2, 2) log(ϵ) ∼ N(0, 1) ϵ ∼ f1(·) ϵ ∼ f2(·)
α = 0.05 α = 0.01 α = 0.05 α = 0.01 α = 0.05 α = 0.01 α = 0.05 α = 0.01

0 (1.0, 0.0, 0.0) 0.045 0.013 0.057 0.015 0.048 0.008 0.058 0.008
(1.0, 0.1, 0.0) 0.270 0.103 0.222 0.084 0.524 0.281 0.683 0.463
(1.0, 0.1, 0.1) 0.462 0.258 0.391 0.214 0.809 0.607 0.941 0.828
(1.0, 0.2, 0.0) 0.773 0.568 0.663 0.455 0.984 0.933 0.997 0.990
(1.0, 0.2, 0.2) 0.965 0.900 0.914 0.810 1.000 1.000 1.000 1.000

0.6 (1.0, 0.0, 0.0) 0.045 0.012 0.061 0.010 0.048 0.012 0.052 0.015
(1.0, 0.1, 0.0) 0.315 0.136 0.297 0.138 0.601 0.391 0.827 0.638
(1.0, 0.1, 0.1) 0.860 0.707 0.770 0.574 0.998 0.976 1.000 0.998
(1.0, 0.2, 0.0) 0.902 0.746 0.810 0.623 0.999 0.988 1.000 0.999
(1.0, 0.2, 0.2) 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000

Table 4
Analysis of the body fat data with LPRE, LARE, LS and LAD.

LPRE LARE LS LAD
Est p-value Est p-value Est p-value Est p-value

β0 2.823 (0.026) 0.000 2.851 (0.027) 0.000 2.835 (0.022) 0.000 2.883 (0.029) 0.000
β1 0.085 (0.038) 0.013 0.052 (0.027) 0.027 0.072 (0.031) 0.011 0.055 (0.038) 0.074
β2 −0.155 (0.068) 0.011 −0.205 (0.073) 0.002 −0.156 (0.056) 0.003 −0.211 (0.088) 0.008
β3 −0.103 (0.052) 0.024 −0.064 (0.044) 0.073 −0.102 (0.043) 0.009 −0.064 (0.047) 0.087
β4 −0.167 (0.076) 0.014 −0.168 (0.063) 0.004 −0.134 (0.063) 0.017 −0.093 (0.081) 0.125
β5 0.582 (0.091) 0.000 0.547 (0.084) 0.000 0.558 (0.075) 0.000 0.501 (0.105) 0.000
β6 −0.231 (0.085) 0.003 −0.200 (0.069) 0.002 −0.217 (0.07) 0.001 −0.235 (0.079) 0.001
β7 0.105 (0.077) 0.086 0.047 (0.055) 0.196 0.090 (0.063) 0.076 0.064 (0.073) 0.190
β8 0.026 (0.054) 0.315 0.003 (0.038) 0.469 0.020 (0.044) 0.327 −0.011 (0.048) 0.409
β9 −0.009 (0.036) 0.401 −0.018 (0.037) 0.313 −0.005 (0.029) 0.437 −0.002 (0.032) 0.475
β10 0.081 (0.049) 0.049 0.034 (0.049) 0.244 0.051 (0.041) 0.106 0.008 (0.056) 0.443
β11 0.033 (0.040) 0.205 0.035 (0.034) 0.152 0.033 (0.033) 0.157 0.028 (0.042) 0.252
β12 −0.088 (0.047) 0.031 −0.084 (0.036) 0.010 −0.088 (0.039) 0.012 −0.095 (0.044) 0.015

Est: parameter estimate. The estimated standard deviations are given in the parentheses.

Table 5
Comparisons of median prediction errors with LPRE, LARE, LS and LAD.

LPRE LARE LS LAD

MPE 3.679 3.957 3.861 3.933
MPPE 0.039 0.046 0.043 0.041
MPAE 0.401 0.433 0.418 0.410
MSPE 13.537 15.660 14.907 15.468

variable Y is the percentage of body fat. We delete one observation with Y = 0 and fit the model

Yi = exp


β0 +

12
j=1

βjZj


ϵi, i = 1, . . . , n, (15)

where Zj, j = 1, . . . , 12, denote the normalized explanatory variables.
To evaluate the performance of different methods, the dataset is partitioned into two parts. The first part with 200

observations is used to fit model (15), and the rest 51 observations are used to evaluate the prediction power. The results
are shown in Tables 4 and 5.
The p-value is calculated by 1 − Φ(|β̂j/ŝj|), where β̂j is the estimate of βj, ŝj is the estimated standard deviation for β̂j, and
Φ(·) is the cumulative distribution function for the standard normal distribution. The variance estimation of the LPRE and
the LS are obtained by the plug-in rule, while that for LARE and LAD are obtained by randomweighting resampling. Table 4
shows that the four methods identify some common variables (with p-value < 0.05), such as age, 1/BMI and abdomen
circumference. It makes sense that the percentage of body fat increases as age, BMI and abdomen circumference become
large. However, the biceps circumference is identified only by the LPRE, indicating the percentage of body fat increases as
the biceps circumference becomes larger.

The prediction accuracy based on the four methods estimation is measured by four different median indices: median of
absolute prediction errors {|Yi − Ŷi|} (MPE), median of product relative prediction errors {|Yi − Ŷi|

2/(YiŶi)} (MPPE), median
of additive relative prediction errors {|Yi − Ŷi|/Yi +|Yi − Ŷi|/Ŷi} (MAPE) andmedian of squared prediction errors {(Yi − Ŷi)

2
}

(MSPE), where Ŷi = exp(β̂0 +
12

j=1 β̂jZj), i = 201, . . . , 251. Table 5 shows that the LPRE has the smallest MPE, MPPE, MAPE
and MSPE among the LPRE, the LARE, the LS and the LAD.
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5. Conclusion

In our view, in the realm of criteria based on relative errors, the LPRE proposed in this paper has the best potential to
be the basic and primary choice, just like the least squares in the realm of criteria based on absolution errors. The proposed
LPRE represents a substantial improvement over that of Chen et al. [1] both theoretically and computationally, particularly
in terms of the simplicity of inference. Extensions can be made to cover analysis of censored data and high dimensional
data. Moreover, we present a more general GREmethod and tests of linear hypotheses based on relative errors, which is not
studied in [1] and other relevant literature. The LPRE criterion may have broad applications in financial and survival data
analysis.
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