期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:159
Multivariate initial sequence estimators in Markov chain Monte Carlo
Article
Dai, Ning1  Jones, Galin L.1 
[1] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
关键词: Markov chain Monte Carlo;    Covariance matrix estimation;    Central limit theorem;    Metropolis-Hastings algorithm;    Gibbs sampler;   
DOI  :  10.1016/j.jmva.2017.05.009
来源: Elsevier
PDF
【 摘 要 】

Markov chain Monte Carlo (MCMC) is a simulation method commonly used for estimating expectations with respect to a given distribution. We consider estimating the covariance matrix of the asymptotic multivariate normal distribution of a vector of sample means. Geyer (1992) developed a Monte Carlo error estimation method for estimating a univariate mean. We propose a novel multivariate version of Geyer's method that provides an asymptotically valid estimator for the covariance matrix and results in stable Monte Carlo estimates. The finite sample properties of the proposed method are investigated via simulation experiments. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2017_05_009.pdf 618KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次