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a b s t r a c t

Markov chain Monte Carlo (MCMC) is a simulation method commonly used for estimating
expectations with respect to a given distribution. We consider estimating the covariance
matrix of the asymptotic multivariate normal distribution of a vector of sample means.
Geyer (1992) developed a Monte Carlo error estimation method for estimating a uni-
variate mean. We propose a novel multivariate version of Geyer’s method that provides
an asymptotically valid estimator for the covariance matrix and results in stable Monte
Carlo estimates. The finite sample properties of the proposed method are investigated via
simulation experiments.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Many distributions encountered in modern applications are intractable in the sense that it is difficult to calculate expec-
tations without resorting to simulation-based methods. If it is difficult to simulate independent realizations from the target
distribution, then it is natural to turn to Markov chain Monte Carlo (MCMC). An MCMC experiment consists of generating
a realization of an irreducible Markov chain having the distribution of interest as its stationary distribution [22,25]. The
simulated data may then be used to estimate a vector of means associated with the stationary distribution. The reliability
of this estimation can be assessed by forming asymptotically valid confidence regions for the means of the stationary
distribution [6,7,9,18,19,28]. (There is a similar approach to quantile estimation [3].) The confidence regions are based on
estimating the covariance matrix in a multivariate Markov chain central limit theorem (CLT). We propose and study a novel
method for estimating this covariance matrix.

Estimating the covariancematrix has beenmostly ignored in theMCMC literature until recently. Vats et al. [28] and Vats
et al. [29] studied non-overlapping batch means and spectral methods, respectively, and found that these estimators often
underestimate the size of the confidence regions and overestimate the effective sample size unless the Monte Carlo sample
sizes are enormous. Kosorok [21] proposed an estimator that is closer in spirit to ours than the spectral and batch means
methods, but we will see later that it typically overestimates the effective sample size, resulting in overconfidence in
the reliability of the simulation. We propose alternative estimators of the covariance matrix that require weaker mixing
conditions on the Markov chain and weaker moment conditions on the function of interest than those required by batch
means and spectral methods. Specifically, our method applies as long as a Markov chain CLT holds and detailed balance is
satisfied, which is not enough to guarantee the asymptotic validity of batch means or spectral methods. We show that the
proposed estimators are asymptotically valid and study their empirical performance. The problem we consider will now be
described more formally.
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Let F be a distribution having support X and if p ≥ 1, let g : X → Rp be F-integrable and set

µ = EF {g(X)} =

∫
X
g(x)F (dx).

Also, let Φ = {X0, X1, X2, . . .} be a Harris ergodic – namely, irreducible, aperiodic and Harris recurrent – Markov chain
having invariant distribution F . By averaging the function over a realization of Φ , estimation of µ is straightforward since,
with probability 1,

µn =
1
n

n∑
i=1

g(Xi) → µ as n → ∞.

The Markov chain strong law justifies the use of MCMC but provides no information about the quality of estimation or how
large the simulation size n should be. More specifically, additional information is needed to answer either of the following
two questions.

1. Given a pre-specified run length n, how reliable is µn as an estimate of µ? Specifically, how do we construct a
confidence region for µ?

2. How large should the simulation size n be to ensure a reliable estimate of µ?

We can address these issues through the approximate sampling distribution of theMonte Carlo error,µn−µ. AMarkov chain
CLT exists when there is a positive definite matrix Σ such that, as n → ∞,

√
n (µn − µ) ⇝ Np(0, Σ). (1)

See Jones [17] and Roberts and Rosenthal [26] for conditions which ensure a CLT. Notice that, due to the serial correlation
inherent to the Markov chain, Σ ̸= varF {g(X)} except in trivial cases. In Section 3, we propose two new estimators of Σ . For
now, let Σn be a generic positive definite estimator of Σ .

A confidence region for µ constructed using Σn forms an ellipsoid in p dimensions oriented along the directions of
the eigenvectors of Σn. Let |·| denote determinant. One can verify by straightforward calculation that the volume of the
confidence region is proportional to

√
|Σn| and thus depends on the estimated covariance matrix Σn only through the

estimate |Σn| of the generalized variance of the Monte Carlo error, |Σ |. The volume of the confidence region can describe
whether the simulation effort is sufficiently large to achieve the desired level of precision in estimation [6,18,28].

Another common and intuitively reasonable method for choosing the simulation effort is to simulate until a desired
effective sample size (ESS), i.e., the number with the property that µn has the same precision as the sample mean obtained
by that number of independent and identically distributed (iid) samples, has been achieved [1,5,10]. LetΛ = varF {g(X)}. Vats
et al. [28] introduced the following definition of effective sample size

ESS = n(|Λ|/|Σ |)1/p, (2)

which is naturally estimated with n(|Λn|/|Σn|)1/p where Λn is an estimator of Λ, e.g., the usual sample covariance
matrix. Vats et al. [28] showed that terminating the simulation based on the effective sample size is equivalent to termination
based on a relative confidence region where the Monte Carlo error is compared to size of the uncertainty in the target
distribution. The point is that again a common method for assessing the reliability of the simulation is determined by the
estimated generalized variance of the Monte Carlo error.

The estimators ofΣ studied by Kosorok [21], Vats et al. [28], and Vats et al. [29] typically underestimate the generalized
variance. We will propose a different method and show that it is asymptotically valid. Specifically, our method provides
a consistent overestimate for the asymptotic generalized variance of the Monte Carlo error and therefore will result in a
slightly larger simulation effort, leading to a more stable estimation process.

The rest of the paper is organized as follows. In Section 2, we develop notation and background in preparation for the
estimation theory. In Section 3, we propose our method and establish its asymptotic validity. In Section 4, we examine the
finite sample properties of the proposed method through a variety of examples. We consider a Bayesian logistic regression
example of 5 covariates where a symmetric random walk Metropolis–Hastings algorithm is implemented to calculate the
posterior mean of the regression coefficient vector, a Bayesian one-way random effects model where we use a random scan
Gibbs sampler to estimate the posterior expectation of all 8 parameters, and a reversible multivariate AR(1) process that
takes values in R12. We illustrate the use of multivariate methods in a meta-analysis application where the posterior has
dimension 65.

2. Notation and background

Recall that F has support X and let B(X ) be a σ -algebra. For n ∈ N+
= {1, 2, 3, . . .} let Pn(x, dy) be the n-step Markov

transition kernel so that for x ∈ X , B ∈ B(X ), and k ∈ N = {0, 1, 2, . . .} we have Pn(x, B) = Pr(Xk+n ∈ B | Xk = x), where Pr
denotes probability. We assume that P satisfies detailed balance with respect to F . That is,

F (dx)P(x, dy) = F (dy)P(y, dx). (3)
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Metropolis–Hastings algorithms satisfy (3) by construction as domany component-wiseMarkov chains, such as randomscan
or random sequence scan algorithms [16]. By integrating both sides of (3), it is easy to see that F is invariant for P . Suppose
X0 ∼ F , that is the Markov chain is stationary. The assumption of stationarity is not crucial since, for Harris recurrent chains,
if a CLT holds under stationarity, it holds for all initial distributions [23, Proposition 17.1.6].

The lag t autocovariance of the process g(X0), g(X1), g(X2), . . . is defined as γt = γ−t = covF {g(Xi), g(Xi+t )}. Denote the
sum of an adjacent pair of autocovariances by Γi = γ2i + γ2i+1 for i ∈ N and its smallest eigenvalue by ξi.

We use the shorthand ∞ for +∞ unless otherwise specified. If
∑

∞

t=0γt converges, the asymptotic covariance matrix in
(1) can be written as [20]

Σ =

+∞∑
t=−∞

γt = −γ0 +

∞∑
t=0

(γt + γ−t ) = −γ0 + 2
∞∑
t=0

γt = −γ0 + 2
∞∑
i=0

Γi. (4)

The following propositions will play a significant role in the development of the new estimation method in Section 3.

Proposition 1. The following properties of the sequences {Γi : i ∈ N} and {ξi : i ∈ N} hold.

(i) Γi is positive-definite, for all i ∈ N.
(ii) Γi − Γi+1 is positive-definite, for all i ∈ N.
(iii) limi→∞Γi = 0.
(iv) The sequence {ξi : i ∈ N} is positive, decreasing, and converges to 0.

Proof. See Appendix A. □

Recall (4) and let themth partial sum be denoted by

Σm = −γ0 +

2m+1∑
t=0

(γt + γ−t ) = −γ0 + 2
m∑
i=0

Γi. (5)

Proposition 2. The following properties of the sequence {Σm : m ∈ N} hold.

(i) There exists a non-negative integer m0 such that Σm is positive definite for m ≥ m0 and not positive definite for m < m0.
Specifically, when m0 = 0, Σm is positive definite for all m.

(ii) The sequence {|Σm| : m = m0,m0 + 1,m0 + 2, . . .} is positive, increasing, and converges to |Σ |.

Proof. See Appendix A. □

Remark 1. The value of m0 is difficult to calculate explicitly because Σm is usually not available in closed form. However,
in Section 4.3, we consider a multivariate AR(1) Markov chain and verify that m0 = 0. In the other examples, we cannot
establishm0 = 0 directly, but in our simulations we never observed anything else in 2000 independent replications.

3. Estimation method

A natural estimator of the lagged autocovariance γt is the empirical autocovariance

γn,t = γ ⊤

n,−t =
1
n

n−t∑
i=1

{g(Xi) − µn} {g(Xi+t ) − µn}
⊤

where ⊤ denotes transpose. Set γ̃n,t = (γn,t +γn,−t )/2 for t ∈ {0, . . . , n−1} and write the sum of the ith (0 ≤ i ≤ ⌊n/2−1⌋)
adjacent pair as Γn,i = γ̃n,2i + γ̃n,2i+1. By construction, Γn,i is symmetric. Let ξn,i denote its smallest eigenvalue. The empirical
estimator of Σm (0 ≤ m ≤ ⌊n/2 − 1⌋) is

Σn,m = −γn,0 +

2m+1∑
t=0

(γn,t + γn,−t ) = −γn,0 + 2
m∑
i=0

Γn,i. (6)

Notice how (6) parallels (5).

3.1. Multivariate initial sequence estimators

We are now in position to formally define the multivariate initial sequence (mIS) estimator. Let sn be the smallest integer
such that Σn,sn is positive definite and let tn be the largest integerm (sn ≤ m ≤ ⌊n/2 − 1⌋) such that |Σn,i| > |Σn,i−1| for all
i ∈ {sn + 1, . . . ,m}. Then, the mIS estimator, denoted Σseq,n, is defined as Σseq,n = Σn,tn . It is possible that Σn,m fails to be
positive definite for allm ∈ {0, . . . , ⌊n/2− 1⌋}, and consequently sn does not exist. Fortunately, when n is sufficiently large,
we can always find such sn.
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Fig. 1. A diagrammatic sketch of the adjustment effect on a confidence region. Adding 2Γn,i+1 squeezes the confidence region in the direction of the
eigenvector corresponding to the negative eigenvalue. The adjustment cancels the shrinkage.

Theorem 1. With probability 1, sn exists as n → ∞. In particular, with probability 1, sn → m0 as n → ∞.

Proof. See Appendix B. □

Thus, mIS is feasible while the following establishes that it is asymptotically valid.

Theorem 2. With probability 1, lim infn→∞|Σseq,n| ≥ |Σ |.

Proof. See Appendix B. □

In the construction of Σseq,n, we update Σn,i to Σn,i+1 = Σn,i + 2Γn,i+1. If Γn,i+1 has negative eigenvalues, adding 2Γn,i+1
will squeeze the corresponding confidence region in undesirable directions. A remedy is to force the negative eigenvalues
of Γn,i+1 to be 0. Suppose Γn,i+1 has eigen-decomposition Γn,i+1 = Q⊤ΛQ where Λ = diag(λ1, . . . , λp). Define the positive
part of Γn,i+1 as Γ +

n,i+1 = Q⊤Λ+Q , where Λ+
= diag(max{λ1, 0}, . . .,max{λp, 0}).

This leads us to define the adjusted multivariate initial sequence (mISadj) estimator. Let sn and tn be as in the definition
of mIS and let

Σ̃n,tn = Σn,sn + 2
tn∑

i=sn+1

Γ +

n,i

where Γ +

n,i is the positive part of Γn,i. Then, the mISadj estimator, denoted Σadj,n, is defined as Σadj,n = Σ̃n,tn . See Fig. 1 for a
display of the effect of using mISadj over mIS.

By construction, the mISadj estimator is positive definite. The modification adds a positive semi-definite matrix to the
mIS estimator, which by Theorem 2 provides a consistent overestimate for the generalized variance, |Σ |, and therefore the
mISadj estimator also has a larger determinant than the asymptotic covariance matrix, Σ .

Theorem 3. With probability 1, lim infn→∞|Σadj,n| ≥ |Σ |.

3.1.1. Related estimators
The motivation for our approach can be found in Geyer’s [9] univariate initial positive sequence (uIS) estimator. Suppose

µ is one-dimensional and denote the variance of the asymptotic normal distribution σ 2. In this setting, Geyer [9] proposed
the uIS estimator

σ 2
pos,n = −γn,0 + 2

tn∑
i=0

Γn,i,

where tn is the largest integer m such that Γn,i > 0 for all i ∈ {1, . . . ,m}. That is, Geyer’s truncation rule is to stop
adding in 2Γn,i when it causes σ 2

n,i = −γn,0 + 2(Γn,0 + · · · + Γn,i) to decrease. (Fig. 2 depicts the behavior of σ 2
n,i and
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Fig. 2. The uIS method truncates the first time Γn,i is non-positive, or equivalently at the first local maximum of {σ 2
n,i; i = 0, . . . , ⌊n/2 − 1⌋}. Computed

using a marginal chain of the Bayesian logistic regression example described in Section 4.1 with Monte Carlo sample size 106 .

Γn,i for one of the examples we consider later.) The uIS estimator is therefore the first local maximum of the sequence
{σ 2

n,i : i = 0, . . . , ⌊n/2 − 1⌋} and thus gives an asymptotic overestimate of σ 2. This is formally stated in his Theorem 3.2:

lim inf
n→∞

σ 2
pos,n ≥ σ 2 with probability 1.

Neither mIS nor mISadj is a straightforward generalization of Geyer’s method in that mIS and mISadj coincide but do
not reduce to uIS when µ is one-dimensional. However, this is not essential because the three methods are asymptotically
equivalent in univariate settings.

Kosorok [21] proposed an alternative multivariate estimator (mK) which was also motivated by Geyer’s [9] approach.
Recall from Proposition 1 that {ξi; i ∈ N} is positive, decreasing, and converges to 0, where ξi is the smallest eigenvalue of
Γi. In mK, the truncation point is chosen to be the largest integer m such that ξn,i > 0 for all i ∈ {1, . . . ,m}. However, this
does not ensure that the generalized variance is adequately estimated and often truncates before the sequence {|Σn,i| : i =

sn, . . . , ⌊n/2 − 1⌋} reaches the first local maximum, as demonstrated in Figs. 3 and 4.

4. Simulation experiments

Our goal is to investigate the finite-sample properties of mIS, mISadj, mK, and uIS through simulation experiments in a
variety of examples. In each of the examples, which are described inmore detail below, we compare the approaches in terms
of effective sample size as well as volume and coverage probability of a joint confidence region.

We describe the simulation examples and the MCMC algorithms used in Sections 4.1–4.3. The results of the simulation
experiments are given in Section 4.4. We then consider a meta-analysis application in Section 4.5.

4.1. Bayesian logistic regression

For i ∈ {1, . . . , 100}, let Xi = (xi1, . . . , xi5) be the observed covariates for the ith observation and Yi be the binary response.
We suppose

Yi|Xi, β
ind
∼ Bernoulli

{
1

1 + exp(−Xiβ)

}
and β ∼ N5(0, 4I5).

This model results in a posterior on R5, denoted F . The data we use is provided in the logit dataset in the mcmc R package.
We are interested in estimating the posterior mean of β , i.e., µ = EF (β). However, this expectation is intractable and

hencewewill use a symmetric randomwalkMetropolis–Hastings algorithm to estimate it. At each step of theMarkov chain,
the proposal for the next step is N5(0, 0.32I5). The standard deviation of 0.3 ensures that in our application the acceptance
rate is about 0.36.
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Fig. 3. The thick dashed line marks the mIS truncation point. Truncating at the first local maximum of {|Σn,i|; i = sn, . . . , ⌊n/2 − 1⌋} achieves a balance
between the individual components. ThemK truncation point – namely the first time {Γn,i; i = 0, . . . , ⌊n/2−1⌋} fails to be positive definite – is premature.
Computed using the 5-dimensional Bayesian logistic regression example described in Section 4.1 with Monte Carlo sample size 106 .

By construction, the Metropolis–Hastings algorithm satisfies detailed balance (3). Vats et al. [28] established that this
Markov chain is geometrically ergodic and that the posterior has a moment generating function and hence a CLT as at (1)
holds.

4.2. Bayesian one-way random effects model

Suppose for i ∈ {1, . . . , K },

Yi | θi, γi
ind.
∼ N (θi, γ −1

i ), θi | µ, λθ , λi
ind.
∼ N (µ, λ−1

θ λ−1
i ),

µ ∼ N (m0, v
−1
0 ), γi

iid
∼ G(a3, b3), λθ ∼ G(a1, b1), λi

iid
∼ G(a2, b2),

where we assume the a1, a2, a3, b1, b2, b3 and v0 are known positive constants while m0 is a known scalar. We consider a
dataset simulated under the settings K = 2, a1 = a2 = b1 = b2 = 0.1, a3 = b3 = 1.5, m0 = 0 and v0 = 0.001. Let y denote
all of the data, λ = (λ1, . . . , λK )⊤, ξ = (θ1, . . . , θK , µ)⊤, and γ = (γ1, . . . , γK )⊤. The hierarchy results in a proper posterior
density f (ξ, λθ , λ, γ | y) on RK+1

× R2K+1
+ . One can verify that the posterior distribution has a finite second moment.

The posterior is intractable in the sense that posterior expectations are not generally available in closed form. We will
use a random scan Gibbs sampler having the posterior as its invariant distribution to estimate the posterior expectation of
all parameters. Doss and Hobert [4] derived the full conditional densities f (λθ | ξ, λ, γ ), f (λ | ξ, λθ , γ ), f (γ | ξ, λθ , λ), and
f (ξ | λθ , λ, γ ) required to implement random scan Gibbs.

It is well known that the random scan Gibbs sampler kernel is reversible, namely, satisfies detailed balance (3), with
respect to the posterior; see e.g., Roberts and Rosenthal [26]. Johnson and Jones [15] established geometric ergodicity of
the random scan Gibbs sampler when 2a1 + K − 2 > 0 and a3 > 1. These conditions combined with the second moment
condition establish a Markov chain CLT.

4.3. Multivariate AR(1) process

Consider an AR(1) process {Xn; n ∈ N} taking values in Rp, i.e., Xn+1 = AXn + Un+1, where Un’s are iid Rp-valued random
variables and A is a p × p matrix.

Ōsawa [24] proved that when Un’s follow a normal distribution Np(θ, V ), then this Rp-valued AR(1) process satisfies
detailed balance (3) if and only if the matrix AV is symmetric. Suppose further that limn→∞An

= 0, then it has the stationary
distribution Np[(I − A)−1θ, (I − A2)−1V ]. It is easy to verify that the second moment is finite.

Under stationarity one can derive the lag t autocovariance, γt = A2t (I − A2)−1V , and hence the covariance matrix,
Σ = {2(I − A2)−1

− I}(I − A2)−1V , as in (4). Noticing that Σ is finite, and that the Markov chain is reversible with a finite
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Fig. 4. The diagonal entries of Γn,i , which correspond to the individual components, are always between the smallest and largest eigenvalues. It is too early
to truncate the first time the smallest eigenvalue drops below 0, as is the case with mK (see the vertical dashed line). On the other extreme, it is too late to
truncate when the largest eigenvalue drops below 0. The ideal truncation point should be somewhere between the uIS truncation points, marked by the
vertical dotted lines. Computed using the 5-dimensional Bayesian logistic regression example described in Section 4.1 with Monte Carlo sample size 106 .

Table 1
Estimated ESS with standard errors. For uIS, only the minimum estimated
ESS is reported.

mK mIS mISadj uIS

Ex1(×104) 5.40 (.002) 5.22 (.001) 5.18 (.001) 3.95 (.002)
Ex2(×104) 4.74 (.007) 3.76 (.002) 3.52 (.003) 1.30 (.001)
Ex3(×105) 8.78 (.000) 8.39 (.000) 8.30 (.001) 7.58 (.001)

second moment, we establish a Markov chain CLT (1) with mean µ = (I − A)−1θ and covariance matrix Σ [11, Corollary 6].
Also, notice thatΣ0 = γ0+2γ1 is always positive definite, which satisfies the assumption in Remark 1 and hence guarantees
the asymptotic properties of our proposed estimation method.

Let us consider the following choices that satisfy the conditions above: θ = 1p, V = Ip, and A = p−1Hpdiag(2−1, . . . , 2−p)
H⊤

p , where Hp is a Hadamard matrix of order p. We set p = 12 in our simulation study.

4.4. Results

In this section, we refer to the setting of Section 4.1 as Example 1, the setting of Section 4.2 as Example 2, and the setting
of Section 4.3 as Example 3. For all examples, we ran 2000 independent replications of the Markov chain for 106 iterations
in Examples 1 and 3 and 5 × 105 iterations in Example 2. We will compare the multivariate methods – namely mIS, mISadj,
and mK – in the context of estimating the effective sample size. We then turn our attention to the finite-sample properties
of the confidence regions produced by the multivariate methods, yielding ellipsoidal regions, and Geyer’s univariate uIS for
individual components, yielding cube-shaped regions. To assess coverage probabilities in Examples 1 and 2, we performed
an independent run of length 1010 of the Markov chain in each example and declared the sample average over those 1010

iterations to be the truth, while in Example 3, the true mean is obtained through the closed form expression derived.
The results concerning the effective sample size of the simulation experiments are given in Table 1. Prior to the work

of Vats et al. [28], it was standard to report the minimum of the univariate effective sample size calculated component-
wise. This leads to a substantial underestimate of the effective sample size as can be seen in Table 1. In contrast, multivariate
error estimation yields more accurate evaluation of the effective sample size. We can approximately order the multivariate
methods in terms of estimated effective sample size: mK > mIS > mISadj. That is, mK is more optimistic than mIS and
mISadj.

We construct 90% confidence regions using the multivariate estimation methods and uIS. Throughout ‘‘uIS’’ and ‘‘uIS-
Bonferroni’’ represent the uncorrected and Bonferroni corrected confidence regions generated by uIS, respectively. Let us
first examine the volumes of the confidence regions generated by different methods.

The volumes are presented in ascending order from left to right across Table 2. The uncorrected uIS confidence regions
are much smaller than the other methods, while the Bonferroni correction considerably enlarges the confidence regions,
resulting in bigger volumes than all the multivariate methods.
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Table 2
Average volumes to the pth (p = 5, 8, 12 for Ex1, 2, 3) root and standard errors of nominal 90% confidence regions.

uIS mK mIS mISadj uIS-Bonferroni

Ex1(×10−3) 5.53 (.001) 6.31 (.001) 6.41 (.001) 6.44 (.001) 7.82 (.001)
Ex2(×10−2) 3.51 (.002) 3.95 (.003) 4.43 (.003) 4.58 (.003) 5.33 (.004)
Ex3(×10−3) 3.84 (.000) 4.78 (.000) 4.89 (.000) 4.92 (.000) 6.16 (.000)

Table 3
Estimated coverage probabilities and standard errors of nominal 90% confidence regions.

uIS mK mIS mISadj uIS-Bonferroni

Ex1 0.622 (.0108) 0.885 (.0071) 0.898 (.0068) 0.900 (.0067) 0.908 (.0065)
Ex2 0.386 (.0109) 0.660 (.0106) 0.845 (.0081) 0.881 (.0073) 0.862 (.0077)
Ex3 0.323 (.0105) 0.882 (.0072) 0.911 (.0064) 0.916 (.0062) 0.917 (.0062)

Table 4
Estimated asymptotic generalized variances (×1079) of the Monte Carlo er-
rors using the colon cancer dataset.

mK mIS mISadj

0.044 6.285 77.144

Table 5
Estimated ESS (×105) with Monte Carlo sample size 4×106 using the colon
cancer dataset. For uIS, only the minimum estimated ESS is reported.

mK mIS mISadj uIS

4.637 4.296 4.134 1.137

Recall that the volume of a confidence region depends on the estimated covariance matrix only through the estimated
generalized variance of the Monte Carlo error. Therefore, Table 2 compares the estimation of the generalized variance by
different multivariate methods. We observe that mK underestimates the generalized variance relatively to mIS. The mISadj
method is comparable to mIS in Examples 1 and 3 but clearly overestimates in Example 2.

Table 3 shows the empirical coverage probabilities of the confidence regions produced by different methods. The
proposed method, mIS, exceeds mK in both the volume and the coverage of confidence regions, although the coverage rate
does not always reach the expectation. The adjustment moderately increases the coverage probability.

The uncorrected uIS regions have a poor coverage. The Bonferroni regions work well in these examples, but in high-
dimensional cases the Bonferroni correction can be overly conservative. Overall, multivariate error estimationmethods yield
better confidence regions.

4.5. A meta-analysis example

Doss and Hobert [4] carried out meta-analyses in order to study the effect of non-steroidal anti-inflammatory drugs
(NSAIDs) on the risk of colon cancer. The dataset consists of 21 studies that relate NSAIDs intake and risk of colon cancer;
see Harris et al. [12] and Doss and Hobert [4] for details. We apply the Bayesian one-way random effects model described in
Section 4.2 to the colon cancer dataset. The posterior f (θ1, . . . , θK , µ, λθ , λ1, . . . , λK , γ1, . . . , γK | y) has dimension p = 65
when K = 21.

We run a Markov chain for 4 × 106 iterations and compute the multivariate estimators – namely mIS, mISadj, and mK –
along with Geyer’s uIS for individual components.

The estimated generalized variances are reported in Table 4. The result agrees with our conclusion from the previous
simulation study: mISadj is more conservative than mIS; mK clearly underestimates the generalized variance.

Table 5 shows the estimated effective sample sizes. The uISmethod results in 65 estimated effective sample sizes, each of
which corresponds to a component of the posterior distribution. Only the minimum estimated univariate effective sample
size is reported.

An advantage of usingmultivariatemethods likemIS over univariate estimation like uIS is that onlymultivariatemethods
capture the cross-correlation between components. This cross-correlation is often significant as seen in Fig. 5.

We construct 90% confidence regions using the multivariate estimation methods and uIS. The left panel of Fig. 6 shows
the cross-sections of the confidence regions that are cut through the center of the confidence regions parallel to the plane
spanned by µ and λ1. The reader should not be worried that the cross-sectioned ellipsoids appear much larger than the
Bonferroni region.

The full 65-dimensional ellipsoid will have a smaller volume than the 65-dimensional Bonferroni region, but this does
not have to be the case for cross-sectioned regions. As a comparison, in the right panel of Fig. 6 we present bivariate 90%



192 N. Dai, G.L. Jones / Journal of Multivariate Analysis 159 (2017) 184–199

Fig. 5. Cross-correlation plot between µ and λ1 . Computed with Monte Carlo sample size 4 × 106 using the colon cancer dataset.

Fig. 6. 90% confidence regions for (µ, λ1) computedwithMonte Carlo sample size 4×106 using the colon cancer dataset. The left panel displays confidence
regions based on a cross-section of the p = 65-dimensional region parallel to the plane spanned by (µ, λ1). In the right panel, the confidence regions are
created by ignoring the other 63 components. In both panels, the solid ellipsoid, dashed ellipsoid, and dotted ellipsoid corresponds to mIS, mISadj, and mK,
respectively, while the small solid and the big dashed rectangles are uIS and uIS-Bonferroni, respectively.

Table 6
Volumes to the pth root (×10−3) of 90% confidence regions for all compo-
nents (p = 65) and for µ and λ1 only (p = 2). Computed with Monte Carlo
sample size 4 × 106 using the colon cancer dataset.

uIS mK mIS mISadj uIS-Bonferroni

6.96 8.70 9.04 9.22 13.39

(a) 65-dimensional confidence regions.

uIS mK mIS mISadj uIS-Bonferroni

5.60 6.04 6.44 6.56 6.68

(b) Bivariate confidence regions for µ and λ1 .

confidence regions for µ and λ1 when we ignore the other 63 components. This clearly shows how multivariate estimation
methods generate confidence regions that are not so liberal as uIS, yet not so conservative as uIS-Bonferroni.
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Table 6 compares the volumes of the confidence regions generated by different methods. The results agree with our
conclusion from the previous simulation study: mISadj is slightly more conservative than mIS; mK clearly underestimates
the generalized variance. The volumes generated by multivariate estimators are fairly close to each other but the univariate
results are far away. Apparently uIS is too liberal while uIS-Bonferroni is too conservative, but the multivariate methods
achieve a balance.

4.6. Discussion

Thepreceding simulation examples and the theory developed indicate thatmIS andmISadj performas theywere designed
to in that they provide a consistent overestimate of the asymptotic generalized variance of the Monte Carlo error. Compared
to standard univariate methods, our estimators adjust for multivariate issues and thus provide more realistic estimates of
Monte Carlo effective sample size and slightly larger confidence regions which result in improved performance in terms of
coverage probabilities.
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Appendix A. Proofs of Propositions 1 and 2

We begin with some preliminary results which will be useful later.

Lemma 1 (Harville [13], Lemma 18.2.17). Let A0, A1, A2, . . . represent a sequence of m×nmatrices. If the infinite series
∑

∞

k=0Ak
converges, then limk→∞Ak = 0.

Since the eigenvalues of a Hermitian p× pmatrix A are real, we may (and do) adopt the convention that they are always
arranged in algebraically non-decreasing order:

λmin(A) = λ(1)(A) ≤ λ(2)(A) ≤ · · · ≤ λ(p−1)(A) ≤ λ(p)(A) = λmax(A). (A.1)

Lemma 2 (Horn and Johnson [14], Corollary 4.3.15). Let p× p matrices A, B be Hermitian and let the respective eigenvalues of A,
B, and A + B be {λ(k)(A) : k = 1, . . . , p}, {λ(k)(B) : k = 1, . . . , p}, and {λ(k)(A + B) : k = 1, . . . , p}, each algebraically ordered as
in (A.1). Then, for all k ∈ {1, . . . , p},

λ(k)(A) + λ(1)(B) ≤ λ(k)(A + B). (A.2)

Lemma 3. Suppose we have two p × p Hermitian matrices A and B. Let the respective eigenvalues of A and B be {λ(k)(A) : k =

1, . . . , p} and {λ(k)(B) : k = 1, . . . , p}, each algebraically ordered as in (A.1). If A − B is positive definite, then λ(k)(A) > λ(k)(B),
for all k ∈ {1, . . . , p}. Further, if A and B are both positive semi-definite, then |A| > |B|.

Proof. Applying (A.2) to B and A−B, we get for all k ∈ {1, . . . , p}, λ(k)(B)+λ(1)(A−B) ≤ λ(k)(A). Since A−B is positive definite,
we have λ(1)(A− B) > 0. Therefore, for all k ∈ {1, . . . , p}, λ(k)(A) > λ(k)(B). When A and B are both positive semi-definite, we
further have for all k ∈ {1, . . . , p},

λ(k)(A) > λ(k)(B) ≥ 0. (A.3)

Since the determinant is equal to the product of all eigenvalues, we take product of (A.3) for all k ∈ {1, . . . , p} and obtain
|A| > |B|. □

Lemma 4 (Vats et al. [29], Theorem 2). Let Σn be a strongly consistent estimator of Σ . Let the respective eigenvalues of
Σn and Σ be {λ(k)(Σn) : k = 1, . . . , p} and {λ(k)(Σ) : k = 1, . . . , p}, each algebraically ordered as in (A.1). Then,
λ(k)(Σn) → λ(k)(Σ) with probability 1 as n → ∞ for all k ∈ {1, . . . , p}.

Corollary 1. Let Σn be a strongly consistent estimator of Σ , then |Σn| → |Σ | with probability 1 as n → ∞.

A.1. Proof of Proposition 1

We begin with the univariate case so g : X → R. Let E be the spectral decomposition measure associated with transition
kernel P and Eg be the induced spectral measure for g . Details on the spectral decompositionmeasure can be found in Rudin
[27], Chan and Geyer [2], and Häggström and Rosenthal [11]. Specifically, for all t ∈ N,

γt =

∫ 1

−1
λtEg (dλ). (A.4)
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It follows that for all i ∈ N,

Γi = γ2i + γ2i+1 =

∫ 1

−1
λ2i(1 + λ)Eg (dλ)

and

Γi − Γi+1 =

∫ 1

−1
λ2i(1 + λ)2(1 − λ)Eg (dλ).

Therefore,Γi andΓi−Γi+1 must benon-negative. To prove Proposition 1(i) thatΓi > 0 andProposition 1(ii) thatΓi−Γi+1 > 0,
we need to show that neither Γi nor Γi − Γi+1 can be zero. For i = 0,

Γ0 =

∫ 1

−1
(1 + λ)Eg (dλ) = 0 ⇔ Eg ({−1}) = 1, (A.5)

and

Γ0 − Γ1 =

∫ 1

−1
(1 + λ)2(1 − λ)Eg (dλ) = 0 ⇔ Eg ({−1, 1}) = 1. (A.6)

For i ∈ N+,

Γi =

∫ 1

−1
λ2i(1 + λ)Eg (dλ) = 0 ⇔ Eg ({−1, 0}) = 1, (A.7)

and

Γi − Γi+1 =

∫ 1

−1
λ2i(1 + λ)2(1 − λ)Eg (dλ) = 0 ⇔ Eg ({−1, 0, 1}) = 1. (A.8)

By (A.5)–(A.8), for an arbitrary i ∈ N, a necessary condition for each of Γi = 0 and Γi − Γi+1 = 0 is Eg ({−1, 0, 1}) = 1.
We now show that Eg ({−1, 0, 1}) = 1 cannot hold under our assumptions, so that both Γi and Γi −Γi+1 are non-zero, which
completes the proof of Proposition 1(i)–(ii).

If Eg is a point mass at 0, then (A.4) yields

γt =

∫ 1

−1
λtEg (dλ) = 0

for all t ∈ N+, which is trivial. Therefore, without loss of generality, we assume

Eg ({0}) < 1. (A.9)

Häggström and Rosenthal [11] showed that when P is irreducible and aperiodic,

Eg ({−1, 1}) = 0. (A.10)

It follows from (A.9) and (A.10) that Eg ({−1, 0, 1}) < 1. By previous arguments, we have proved Proposition 1(i)–(ii).
That is, for all i ∈ N, Γi > 0 and Γi − Γi+1 > 0.

Proposition 1(iii), namely limi→∞Γi = 0, follows from Lemma 1 and the assumption that
∑

∞

i=0Γi converges.
Finally, by Proposition 1(i)–(iii), we obtain Proposition 1(iv), i.e., {Γi : i ∈ N} is positive, decreasing, and converges to 0.
We now turn to the multivariate case so g : X → Rp and p ≥ 2. Set h = v⊤g for an arbitrary v ∈ Rp and v ̸= 0. Then,

h : X → R is measurable and square integrable with respect to F . Recall that the Markov chain is assumed stationary. For
t ∈ N define the lag t autocovariance

γ ∗

t = γ ∗

−t = covF {h(Xi), h(Xi+t )}

and for i ∈ N define Γ ∗

i = γ ∗

2i + γ ∗

2i+1. Notice that

Γ ∗

i = γ ∗

2i + γ ∗

2i+1 = covF {h(X0), h(X2i)} + covF {h(X0), h(X2i+1)}

= v⊤covF {g(X0), g(X2i)}v + v⊤covF {g(X0), g(X2i+1)}v

= v⊤γ2iv + v⊤γ2i+1v = v⊤(γ2i + γ2i+1)v = v⊤Γiv.

By the univariate case considered above, Γ ∗

i > 0. Since v is arbitrary, Γi is positive definite. A similar argument shows that
Γi − Γi+1 is positive definite. This establishes Proposition 1(i)–(ii).

Use Lemma 1 and notice that
∑

∞

i=0Γi converges by assumption. We obtain limi→∞Γi = 0. Thus, Proposition 1(iii) is
proved.

Since Γi is positive definite, ξi > 0 for all i ∈ N. Since Γi −Γi+1 is positive definite, we obtain from Lemma 3 that ξi > ξi+1.
Hence, ξi → 0 as i → ∞ which establishes Proposition 1(iv). □
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A.2. Proposition 2

For allm ∈ N, let λm be the smallest eigenvalue ofΣm. Notice thatΣm−Σm−1 = 2Γm is positive definite by Proposition 1.
Then, Lemma 3 implies λm > λm−1 and hence {λm : m ∈ N} is monotonically increasing. Since {Σm : m ∈ N} converges to
the asymptotic covariance matrix Σ , by Lemma 4 we have

lim
m→∞

λm = λ > 0,

where λ is the smallest eigenvalue of Σ .
If λ0 ≤ 0, there exists a positive integerm0 such that λm > 0 form ≥ m0 and λm ≤ 0 form < m0. If λ0 > 0, then λm > 0

for allm ∈ N. In this case, letm0 = 0. Immediately, we have that Σm is positive definite form ≥ m0 and not positive definite
form < m0. It then follows that for allm ≥ m0, |Σm| > 0.

Now, letm > m0 and notice thatΣm−Σm−1 is positive definite. Using Lemma3,we obtain for allm > m0, |Σm| > |Σm−1|.

By limm→∞Σm = Σ and Corollary 1,

lim
m→∞

|Σm| = |Σ |.

Therefore, {|Σm| : m = m0,m0 + 1,m0 + 2, . . .} is positive, increasing, and converges to |Σ |. □

Appendix B. Proofs of Theorems 1 and 2

Lemma 5. For all t ∈ N, with probability 1, as n → ∞, γn,t → γt .

Proof. Notice that

γn,t =
1
n

n−t∑
i=1

{
g(Xn,i) − µn

} {
g(Xn,i+t ) − µn

}⊤

=
1
n

n−t∑
i=1

g(Xn,i)g(Xn,i+t )⊤ −
1
n

n−t∑
i=1

g(Xn,i)µ⊤

n −
1
n

µn

n−t∑
i=1

g(Xn,i+t )⊤ +
n − t
n

µnµ
⊤

n .

By repeated application of the Markov chain strong law, we see that, with probability 1, as n → ∞,

γn,t → EF {g(X0)g(Xt )⊤} − µµ⊤
= covF {g(X0), g(Xt )} = γt . □

Corollary 2. For all m ∈ N, with probability 1, as n → ∞, Σn,m → Σm.

Proof. This follows immediately from Lemma 5. □

Lemma 6. If a sequence of random variables X1, X2, . . . converges to X with probability 1, then, for an arbitrary x ∈ R such that
Pr(X = x) = 0,

lim inf
n→∞

{Xn ≤ x} = {X ≤ x} w.p. 1 (B.1)

and

lim inf
n→∞

{Xn > x} = {X > x} w.p. 1. (B.2)

Proof. We only prove the first part. The second part can be shown by a similar argument.
Recall that two events A and B are equal almost surely if both of the events A \ B and B \ A are null sets [8, p. 13]. Thus,

we need to show that both lim infn→∞{Xn ≤ x} \ {X ≤ x} and {X ≤ x} \ lim infn→∞{Xn ≤ x} are null sets.
Suppose ω ∈ lim infn→∞{Xn ≤ x} \ {X ≤ x}. By definition,

ω ∈ lim inf
n→∞

{Xn ≤ x}

is equivalent to saying that there exists some n such that for allm ≥ n, Xm(ω) ≤ x. This implies that

lim
n→∞

Xn(ω) ≤ x < X(ω),

where the second inequality is due to ω ̸∈ {X ≤ x}. It follows that

ω ∈

{
lim
n→∞

Xn ̸= X
}
.
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Thus, we have that

lim inf
n→∞

{Xn ≤ x} \ {X ≤ x} ⊂

{
lim
n→∞

Xn ̸= X
}

which is a null set because Xn
a.s.
→ X .

Suppose ω ∈ {X ≤ x} \ lim infn→∞{Xn ≤ x}. By definition,

ω ̸∈ lim inf
n→∞

{Xn ≤ x}

is equivalent to saying that for all n, there exists some m ≥ n such that Xm(ω) > x. This implies that

lim
n→∞

Xn(ω) ≥ x ≥ X(ω),

where the second inequality is due to ω ∈ {X ≤ x}. It follows that

ω ∈

{
lim
n→∞

Xn ̸= X
}⋃

{X = x}.

Thus, we have that

{X ≤ x} \ lim sup
n→∞

{Xn ≤ x} ⊂

{
lim
n→∞

Xn ̸= X
}⋃

{X = x},

which is a null set.
So far we have proved (B.1). A similar argument can be used to prove (B.2). □

Equipped with the preceding results, we now prove the following lemma in preparation for Theorems 1 and 2.
Recall that m0 is a non-negative integer such that Σm is positive definite for m ≥ m0 and not positive definite for

m < m0. Also, recall that sn is the smallest integer such that Σn,sn is positive definite and that tn is the largest integer m
(sn ≤ m ≤ ⌊n/2 − 1⌋) such that |Σn,i| > |Σn,i−1| for all i ∈ {sn + 1, . . . ,m}. The smallest eigenvalues of Σm and Σn,m are
denoted λm and λn,m, respectively.

Lemma 7. Suppose lim infn→∞{λn,m0−1 ≤ 0} occurs with probability 1. For all K ≥ m0,

Pr
(
lim inf
n→∞

{sn = m0, tn ≥ K }

)
= 1.

Proof. Define ∆m = |Σm| − |Σm−1| and ∆n,m = |Σn,m| − |Σn,m−1|. Notice that

{sn = m0, tn ≥ K } = {sn = m0} ∩ {∆n,i > 0 for all i such that m0 < i ≤ K }

=

( ⋂
m<m0

{Σn,m is not positive definite}

)⋂
{Σn,m0 is positive definite}

⋂⎛⎝ ⋂
m0<i≤K

{∆n,i > 0}

⎞⎠
=

( ⋂
m<m0

{λn,m ≤ 0}

)⋂
{λn,m0 > 0}

⋂⎛⎝ ⋂
m0<i≤K

{∆n,i > 0}

⎞⎠ ,

where λn,m denotes the smallest eigenvalue of Σn,m. Then, we write

lim inf
n→∞

{sn = m0, tn ≥ K } =

( ⋂
m<m0

lim inf
n→∞

{λn,m ≤ 0}

)⋂
lim inf
n→∞

{λn,m0 > 0}
⋂⎛⎝ ⋂

m0<i≤K

lim inf
n→∞

{∆n,i > 0}

⎞⎠ . (B.3)

By Lemma 4, Corollaries 1 and 2, for allm, with probability 1,

λn,m → λm as n → ∞, (B.4)

and for all i, with probability 1,

∆n,i → ∆i as n → ∞. (B.5)

By Proposition 2(i), λm0 > 0 so that Pr(λm0 = 0) = 0 and λm ≤ 0 for allm < m0. In particular, λm < 0 so that Pr(λm = 0) = 0
for all m < m0 − 1. By Proposition 2(ii), ∆i > 0 so that Pr(∆i = 0) = 0 for i > m0. Then, by Lemma 6, we have that for all
m < m0 − 1,

lim inf
n→∞

{λn,m ≤ 0} a.s.
=

{
lim
n→∞

λn,m ≤ 0
}

, (B.6)

lim inf
n→∞

{λn,m0 > 0} a.s.
=

{
lim
n→∞

λn,m0 > 0
}

,
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and for i > m0

lim inf
n→∞

{∆n,i > 0} a.s.
=

{
lim
n→∞

∆n,i > 0
}

.

Notice that (B.6) holds for m = m0 − 1 if λm0−1 < 0. When λm0−1 = 0, (B.6) is true only if lim infn→∞{λn,m0−1 ≤ 0} occurs
with probability 1.

Under the preceding assumption, we continue to write (B.3) as

lim inf
n→∞

{sn = m0, tn ≥ K } =

( ⋂
m<m0

lim inf
n→∞

{λn,m ≤ 0}

)⋂
lim inf
n→∞

{λn,m0 > 0}
⋂⎛⎝ ⋂

m0<i≤K

lim inf
n→∞

{∆n,i > 0}

⎞⎠
a.s.
=

( ⋂
m<m0

{
lim
n→∞

λn,m ≤ 0
})⋂{

lim
n→∞

λn,m0 > 0
}⋂⎛⎝ ⋂

m0<i≤K

{
lim
n→∞

∆n,i > 0
}⎞⎠ . (B.7)

By Proposition 2(i), λm0 > 0 and λm ≤ 0 for allm < m0. Then, by (B.4), we have form < m0

Pr
(
lim
n→∞

λn,m ≤ 0
)

≥ Pr
(
lim
n→∞

λn,m = λm

)
= 1, (B.8)

and

Pr
(
lim
n→∞

λn,m0 > 0
)

≥ Pr
(
lim
n→∞

λn,m0 = λm0

)
= 1. (B.9)

By Proposition 2(ii), ∆i > 0 for i > m0. Then, by (B.5), we have

Pr
(
lim
n→∞

∆n,i > 0
)

≥ Pr
(
lim
n→∞

∆n,i = ∆i

)
= 1. (B.10)

It follows from (B.8)–(B.10) that

Pr

⎧⎨⎩
( ⋂

m<m0

{
lim
n→∞

λn,m ≤ 0
})⋂{

lim
n→∞

λn,m0 > 0
}⋂⎛⎝ ⋂

m0<i≤K

{
lim
n→∞

∆n,i > 0
}⎞⎠⎫⎬⎭ = 1.

Then, by (B.7), we obtain the result. □

Remark 2. Consider the assumption that lim infn→∞{λn,m0−1 ≤ 0} occurswith probability 1. Ifm0 = 0, then this assumption
is not required for the Lemma; recall Remark 1. In addition, the assumption holds ifΣm0−1 is not positive semi-definite. Recall
from Proposition 2(i) we have that Σm0−1 is not positive definite but, of course, it may still be positive semi-definite.

B.1. Theorem 1: Feasibility of the estimation method

Proof. WhenK ≥ m0 and n > 2m0, {sn exists} ⊃ {sn = m0} ⊃ {sn = m0, tn ≥ K }. Then, the result follows fromLemma7. □

B.2. Theorem 2: Overestimation for the asymptotic generalized variance of the Monte Carlo error

Proof. We need to prove, for all ϵ > 0,

Pr

(
∞⋂

n=N

{|Σn,tn | > |Σ | − ϵ}

)
→ 1 as N → ∞. (B.11)

Recall that ∆i is defined as ∆i = |Σi| − |Σi−1|.
By Proposition 2(ii) that limm→∞|Σm| = |Σ |, we can write

∞∑
i=m0+1

∆i = |Σ | − |Σm0 | < ∞,

so
∑

∞

i=m0+1∆i converges; and hence the tail must converge to 0. Therefore, for all ϵ > 0, there exists Kϵ ≥ m0 such that

|Σ | − |ΣKϵ | =

∞∑
i=Kϵ+1

∆i < ϵ/2. (B.12)
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Notice that{
|Σn,tn | > |Σ | − ϵ

}
⊃
{
|Σn,tn | > |Σ | − ϵ

}⋂
{sn = m0, tn ≥ Kϵ}

⊃
{
|Σn,Kϵ | > |Σ | − ϵ

}⋂
{sn = m0, tn ≥ Kϵ} . (B.13)

The second step in (B.13) is due to the definition of mIS:

‘‘sn = m0 and tn ≥ Kϵ for some Kϵ ≥ m0’’ implies ‘‘|Σn,tn | ≥ |Σn,Kϵ |’’.

It follows directly from (B.13) that
∞⋂

n=N

{
|Σn,tn | > |Σ | − ϵ

}
⊃

(
∞⋂

n=N

{
|Σn,Kϵ | > |Σ | − ϵ

})⋂(
∞⋂

n=N

{sn = m0, tn ≥ Kϵ}

)
.

Therefore, to prove (B.11), it suffices to show

Pr

(
∞⋂

n=N

{|Σn,Kϵ | > |Σ | − ϵ}

)
→ 1 as N → ∞, (B.14)

and

Pr

(
∞⋂

n=N

{sn = m0, tn ≥ Kϵ}

)
→ 1 as N → ∞. (B.15)

By the continuity of measure, (B.15) is equivalent to Lemma 7 and thus holds true. Then, it remains to prove (B.14).
By Corollaries 1 and 2, with probability 1, |Σn,Kϵ | → |ΣKϵ | as n → ∞, which gives

Pr

(
∞⋂

n=N

{abs(|Σn,Kϵ | − |ΣKϵ |) < ϵ/2}

)
→ 1 as N → ∞ (B.16)

where abs(·) denotes absolute value.
When |Σ | − |ΣKϵ | < ϵ/2 as in (B.12), abs(|Σn,Kϵ | − |ΣKϵ |) < ϵ/2 implies |Σn,Kϵ | > |Σ | − ϵ, so

Pr

(
∞⋂

n=N

{abs(|Σn,Kϵ | − |ΣKϵ |) < ϵ/2}

)
≤ Pr

(
∞⋂

n=N

{|Σn,Kϵ | > |Σ | − ϵ}

)
. (B.17)

Putting (B.16) and (B.17) together, we obtain (B.14). □

Appendix C. Confidence region with the univariate approach

Webriefly state here the currentmethods for constructing confidence regionswith univariate estimators. Letσ (i)2 denote
the (i, i)th entry of Σ . We treat the problem as p univariate cases, i.e., to estimate σ (i)2 using univariate samples. Then, we
construct cube-shaped confidence regions.

Let µn(i) be the ith component of µn, and σn(i)2 be the estimator for σ (i)2. The uncorrected confidence region is given by

Cn =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
µn(1) ± z1−α/2σn(1)/

√
n

µn(2) ± z1−α/2σn(2)/
√
n

...

µn(p) ± z1−α/2σn(p)/
√
n

⎫⎪⎪⎪⎬⎪⎪⎪⎭
with a volume of(

2z1−α/2
√
n

)p n∏
i=1

σn(i).

The Bonferroni confidence region for µ is

Bn =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
µn(1) ± z1−α/2pσn(1)/

√
n

µn(2) ± z1−α/2pσn(2)/
√
n

...

µn(p) ± z1−α/2pσn(p)/
√
n

⎫⎪⎪⎪⎬⎪⎪⎪⎭
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with a volume of(
2z1−α/2p

√
n

)p n∏
i=1

σn(i).
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