JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS | 卷:508 |
Spin-resolved electron transport in nanoscale heterojunctions. Theory and applications | |
Article | |
Useinov, Artur1  Lin, Hsiu-Hau2  Useinov, Niazbeck3  Tagirov, Lenar4,5  | |
[1] Natl Chiao Tung Univ, Int Coll Semicond Technol, Hsinchu 30010, Taiwan | |
[2] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan | |
[3] Kazan Fed Univ, Inst Phys, Kazan 420008, Russia | |
[4] RAS, Zavoisky Phys Tech Inst, FRC Kazan Sci Ctr, Kazan 420029, Russia | |
[5] Tatarstan Acad Sci, Inst Appl Res, Kazan 420111, Russia | |
关键词: Spintronics; Interconnects; Heterojunctions; Point contact; Ballistic magnetoresistance; Spin-resolved conductance; Spin-resolved contact resistance; Domain wall resistance; Tunnel magnetoresistance; | |
DOI : 10.1016/j.jmmm.2020.166729 | |
来源: Elsevier | |
【 摘 要 】
The work represents the extended theoretical model of the electrical conductance in nanoscale magnetic pointlike contacts. The developed approach describes diffusive, quasi-ballistic, ballistic and quantum regimes of the spin-resolved conductance that is important for further development of the contact Andreev reflection spectroscopy, heterojunction models, scanning tunnel microscopy techniques. As a benefit, the model provides a unified description of the contact resistance from Maxwell diffusive through the ballistic to purely quantum transport regimes without residual terms. The model of the point contact assumes that the contact area can be replaced by a complicated object (i.e. the tunnel barrier or complicated one with nanoparticles, narrow domain wall, etc.), where the potential energy profile determines its electrical properties. The model can be easily adapted to particular contact materials, its physical properties and species of the contact area.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmmm_2020_166729.pdf | 3425KB | download |