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The work represents the extended theoretical model of the electrical conductance in nanoscale magnetic point-
like contacts. The developed approach describes diffusive, quasi-ballistic, ballistic and quantum regimes of the
spin-resolved conductance that is important for further development of the contact Andreev reflection spec-
troscopy, heterojunction models, scanning tunnel microscopy techniques. As a benefit, the model provides a
unified description of the contact resistance from Maxwell diffusive through the ballistic to purely quantum
transport regimes without residual terms. The model of the point contact assumes that the contact area can be
replaced by a complicated object (i.e. the tunnel barrier or complicated one with nanoparticles, narrow domain
wall, etc.), where the potential energy profile determines its electrical properties. The model can be easily
adapted to particular contact materials, its physical properties and species of the contact area.

1. Introduction

Quantitative theory of conductance G in various electronic systems
with restricted geometry has numerous important applications, e.g., in a
case of point contacts it solves the problem of determining the size of
the contact [1-3]. The conductivity of point contacts (PCs) has been
studied during many years in the past [4]. At present time, great efforts
have been made to create reliable PCs or nanocontacts (NCs) with
predictable properties, considering the interface matching of the na-
nowire connections between normal, semiconductor, ferromagnetic
(FM) and superconducting materials in nanoscale spintronics devices
[5-11].

A simplest, but relevant in most cases, solvable model for the PC is a
circular constriction of the radius a, which connects two large electron
reservoirs. It is convenient to quantify the conducting properties of the
NC via the dimensionless ratio of the geometrical size a to the bulk
electron mean free path I The a/l or it’s inverse, the Knudsen ratio
K = l/a, becomes an output of a fitting of the theory to experimental
data on the resistance of the PCs [12]. Once [ is known from resistivity
measurements of the material, the effective diameter of the contact can
be estimated from the fitted K.

The model diameter d = 2a can be identified as the size of the
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contact, if information about the contact shape is unavailable. Two
limiting regimes of the conductance through NCs are commonly dis-
cussed. The first one is the Maxwell, or diffusive conductance Gy;, when
the contact size much larger than [ (K <« 1.0) [13-15],

Gy = 2a/py, (€))
where py, is the bulk resistivity, which can be expressed in terms of bulk
conductivity oy of the isotropic metal as follows:

e’nl e’pil
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where e, kr = p./h and n = kj/3n%are the electron charge, Fermi wave-
number and free electron density in metals, respectively. Within the
model, the bulk mean free path | = #kpt/m, (m, is the electron mass)
depends on impurities concentration, defects, electron-electron and
electron-phonon scattering via the average time 7 between collisions.

The second regime refers to the ballistic conductance through the
contact area when no any collisions occur during the electron trans-
mission [16], K> 1.0. In this case, there is no place or information
about [ in the Sharvin conductance:
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The factor Gy = 2¢%/h = 7.7481-10°Q! is the conductance quantum,
N =~ (kpa/2)? is the number of open conductance channels accom-
modating the nanoconstriction [7,17].

Furthermore, it is relatively easy to obtain the expressions, V\‘I‘I’I}ich

. 3
show the connection between G, oy and Gy: Gs = %;Uv, ov=,_-Gs

and Gy = %GS. It is noticed that Sharvin [16] estimated asymptotic
behavior of the resistance as Ry ~ p/e?(2a)*n. An expression of Sharvin
conductance in the form of Gy = 37/(16Rs) with accuracy up to 37/16
factor is used in literature [2,18,19]. In general case, n is a complicated
function of kr. Hence, if the system is not limited by the model of free
electrons, the n might be corrected according properties of the specified
material and its Fermi surface, so n and kr can be determined within ab
initio calculations as well.

Moreover, there is another view of the Sharvin conductance, which
is often used [2,18,19]:

3ma?

T dpyl )
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It is obtained by multiplying the numerator and denominator of (3) by [
and applying (2). Expression (4) has an advantage in the case of con-
striction (i.e. a contact of identical metals), it can be applied for esti-
mating the effective constriction radius a. Indeed, according to Eq. (2),
the product p,/! = constant is independent of I. Provided that the pro-
duct p [ is known, py, can be obtained from resistivity measurements,
and [ can be extracted via the size effects in thin films and nanowires
(NWs), or combining the resistivity with specific heat measurements
and utilizing the Pippard relations [20,21]. It seems that Eq. (4) re-
presents a useful tool to estimate the NC size.

The problem can be considered from the opposite point of view:
once the contact size is known in some way, the resistance measure-
ments give a tool to estimate p,! - product, ie. establish the contact
material parameter from the single kind of measurements. Indeed, it
has been done for Au-Au nanocontacts [18], where it was pointed out
that the procedure to extract I from p,! = constant has yielded
I = 3.8nm, which is an order of magnitude below the bulk ! ~ 38 nm for
99.99% pure gold [22] at room temperature. Moreover, it was noticed
that the range of applicability of the ballistic Sharvin approach, (3) or
(4), is restricted to a smallest radius of the contacts close to 1nm,
otherwise, the accordance of the theory with the relevant experiment is
poor. Thus, both diffusive Maxwell and ballistic Sharvin limits of the
NC conductance cover extreme limits keeping unexplored a wide gap of
most accessible and relevant sizes from 1nm to 100nm.

The analysis of the electron transport through a circular constriction
at arbitrary relationship between the orifice radius a and the mean free
path [ has been made by Wexler [12]. It is based on the variation so-
lution for the Green function (GF) of the Boltzmann kinetic equations.
The obtained solution for the resistance was represented as follows
[12]:

Rw= = —y(K)+

Gw Gum Gs 5)
where Gy is defined as the Wexler conductance, y(K) is a slowly
varying function with the asymmetric values y(K — 0) = 1.0, and
y(K — o0) = 97%/128 = 0.694. Expression (5) has the form of an inter-
polation formula combining additively the diffusive Maxwell and bal-
listic Sharvin resistances, the relevant terms are vanishingly small when
one of them approaches the related limit. The gamma factor gives a
smooth transition from one regime to the other by inclining the
asymptotics to the correct values.

In 1999 Nikolic and Allen [23] reconsidered the Wexler solution for
the orifice conduction for the non-magnetic junctions. The stationary
Boltzmann and Poisson equations for the electric potential were solved
taking into account the Bloch-wave propagation and Fermi-Dirac
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statistics in presence of an electric field. It is worthy to note, that this
solution is referred to in literature as the most accurate solution [24]
(see, however, strong assumptions after Eq. (59) in Ref. [23] when
formulating an easy-to-use outcome of the approach. The low-order
solution was cast into the form of the Wexler solution with a proper
y (K) re-definition, Fig. 2 in Ref. [23]). At the same time, Mikrajuddin
et al. [25] proposed the approach of the resistance model, which is
based on the solution of the electrostatic Laplace problem, summing up
the resistances of the infinitesimal shells between equipotential surfaces
in the orifice constriction. The result is represented in the form of Eq.
(5) with the re-defined y (K). The comparison of the Nikolic-Allen and
Mikrajuddin et al. solutions shows the significant difference between
them, which again refreshes the interest to the problem. To summarize,
the theoretical approach of the orifice constriction, which is determined
via the classical electrodynamics, results in the sum of the diffusive and
ballistic terms with a complex transition between them.

We propose an alternative approach, which is based on the quasi-
classical transport formalism [26-28]. The outcome and advantage of
our solution is a simple integral expression, which provides smooth
functional transition between the Sharvin and Maxwell limits without
residual terms or counterparts. Moreover, this result is derived as a
limiting case from a general quantum model of the NC, where NC can
be built from different magnetic metals or metal alloys. As example of
verification, the theoretical model is applied to explain experimental
data for the golden NCs (symmetric, non-magnetic limit of the general
theory) as well as to explain the resistance impact of the single domain
wall (DW) in magnetic NWs.

2. Theoretical model of the spin-resolved electron transport in
heterojunction

In this section, the model of the NC is considered in terms of the
extended quasiclassical approach, which is based on solution of the
transport differential equations for the quasiclassical GFs. The model is
formulated as a boundary problem in which two large electron re-
servoirs (leads) are linked via the general NC’s interface, Supplementary
Material. The NC itself can be a simple constriction or a complicated
structure containing e.g. a tunnel barrier. It is important only that the
internal NC’s structure could be solved quantum-mechanically, and
then the electric current through the NC is expressed in terms of the
boundary solution, solving the problem of the conduction. The appli-
cation of this method is suitable for the heterostructure dimensions
larger than the Fermi wavelength of a free electron, Az = 27/kr which is
approximately 0.5 nm.

Considering the general case of FM hetero-contact, which is com-
posed of different FM metals, we assume that the spin-dependent Fermi
wave-numbers in both sides of the contact kp, as well as I, (@ =1, |)
are accounted as arbitrary parameters. The NC is modeled by a con-
ductive circular orifice of the radius a obtained in an impenetrable
membrane. This membrane divides the space into the left (L) and right
(R) half-spaces, and each half-space is assigned to a single magnetic
domain, Fig. 1. The geometry of this NC matches with the cylindrical
coordinate system [r, ¢, z], where z is the symmetry axis. The voltage
V, which is applied far away from the contact area by equipotential
planes, induces the electrical current I? = If + If. The solution for the
net charge current I with the spin projection « and positive bias, which
is applied to the right terminal, can be brought to the form:

2 )2 42 I 2
I; — € (kmm) a‘’v '/0' dkjl (kka)Ex(k),

2rh (6)

where k is the wave-number conjugated to the radial variable in the
contact plane; ki, is minimum one of the two wave-numbers: k,,@,a and
kR ; Ji (ka) is the Bessel function, appearing after the integration over
the contact plane, the detailed derivation is given in the Supplementary
Material. Despite the external similarity of expression (6) with those
given earlier in our works [28-30], the integrand function F, (k) is
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Fig. 1. The schematic view of NC with chemical potential drop. The selected rectangular area shows the contact interface in a non-conductive membrane. In general
case, an electron with kf, and trajectory angle 6; « transmits through the NC to the right-hand side having outgoing parameters kf, and 6+, respectively.

completely reconsidered:
E (k) = (x.Dy)o, — (N1 (xp Wi Yo, + Na (X, Wr)a, ), @

where D, is the quantum-mechanical transmission coefficient;
x, = cos(6;); The angle between the z-axis and direction of the electron
trajectory is 6., which is related to the contact side ¢ = L(R),
see Fig. 1. The averaging over solid angle is given in spherical
coordinate system [k, 6, 9], and (..o, is equivalent to
21” . dqofe" sin(8;)(...)dg;, = f (...)dx;, where the limit X = cos(6,.)
appears as a result of the electron momentum conservation along the
direction of the contact’s plane. The index « is hidden, but refers to all
variables throughout. Further quantities are displayed as follows:

Ny = {{Da)g, [2Q = Ap) + ] — (Da)epda} N,

Ny = {(Da)er [2(1 = A1) + 4] = (Da)g As}A7Y,

A=401 -0 = AR) + 2[4 = ) + A — )] — L4 + Lk,
where

1
Aowy =

1+ k2

a+ (le)2(1 - x;))*? >

6 XLD
X+ x5 (1 + (kg8 — XL))3/2

é xLD
xL + x5 (1 + (k1 - XL))3/2

Ao = Da
TN+ (kg8 - 322/,

_ XLD
(aWe)e, = <(1 T (LG — <2 >5L

— XLD
(L Wr)e, = <(1 + (klxd)*(1 — xL))3/2>

i ; sx1.D
The expressions above include (D,)g = Lﬁz and
\ x% +X&r 6

§= k{{a/ kX(V), where the spin index « is conserved for the wave vector

kX (V) = JE)* + (2mge/n*)V according the assumption that the spin

diffusion length is larger than the contact dimension. The lower integral

limit becomes X =0 (6, = n/2) at the condition & < 1, otherwise
X = (6% -1)/8%, or both conditions can be
joined as follows: X = Re[/(62 — 1)/62]. The solution for the reversed
bias V  with negative terminal on the right-hand
side can be retrieved using the symmetry of the system:
k. — kX2(V), kR(V) — kf,, that gives again the positive terminal on
the right side. It is assumed that the left side is grounded
and the conduction band edge does not move with V, the Fermi
level is fixed, otherwise: kX(V) = \/ (KR)? + 2mge/n®)V/2 and
kE(V) = (kk)? — @mpe/m)V /2, and 8 = kX (V)/KR(V).

The transmission coefficient D, is a function of the applied voltage V
and parameters of the potential energy profile within NC area. It should
be noticed that transmission D, for 2D and 3D electron transport, which
is characterized originally by 1D potential energy profile U (z), becomes
a function of 6., and V, consisting the projections of the Fermi wave-
vectors on the z-axis: k3~ = kf,cos(6,,) and ki® = kX (V)cos(6gq). It
should be noticed, that the derived set of the variables, such as
Aey M4, (X W), as a functions of k in (6) and (7), is significantly
different from the set in our previous works [28-30], while the ballistic
and tunnel-responsible term (x;D, ), is conserved. The origin of this
difference is the accurate solution of the integro-differential equation
which takes into account the second-order derivatives of the GFs by z.
The mathematical derivation of Eq. (6) is collected in Supplementary
Material.

The general solution (6) can be verified applying it to the case of
symmetric non-magnetic contact: Dy, = 1.0, .z =1, kk = k¥ = kg,
and thus F, (k) = F; (k), If = I}. The replacement of the variable y = ka
in Eq. (6) results to f0°° dy J? (y)/y = 1/2. For the infinitesimal applied

= (If + IP)/V reads:

voltage V the conductance G = -~

o dy J12(Y)
Y 14 y*K?+ |1 +yK? ’ (8)

G = 4Gs %—jo'

which satisfies the exact Maxwell and Sharvin limits automatically. It is
an advantage of the revisited derivation of the present work against the
previous ones [28-30]. One might expect that it gives also more precise
I — V curves for the non-magnetic NCs. The analytical solution Egs.
(6)—(8) is applied in the next section for the comparison with alter-
native theoretical approaches and fitting the experimental data avail-
able in literature.

3. Discussion: applicability of the model

The general approach, that we developed in the present work,
covers a variety of the NC realizations, which might be involved further
in the development of the quantum integrated circuits for the next
generation of electronics below 10 nm. Potentially, the model can deal
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with spin-resolved conducting properties of the nanoscale elements
such as interconnects, complicated magnetic tunnel junctions (MTJs),
quantum dots, spin field-effect transistors (FETs), etc. As a first-order
approximation, the contact area can be replaced by a simple or com-
posite quantum object, where the electric properties are determined by
the internal structure of the energy levels and/or the potential energy
profile across the junction. For instance, the spin-resolved quantum
term F, = (x;D)q, of the model was successfully applied for the simple
MTJs [31-33] as well as for MTJs with embedded nanoparticles [34,35]
explaining the voltage dependence of the tunnel magnetoresistance
TMR(V), the quantized conductance behavior [34] and R(V') curves.
The improved model Egs. (6)-(8) extends further the range of applic-
ability, making it more adequate to the real systems.

3.1. The orifice conductance: comparison with alternative theoretical
models

One of the goals of this work is to compute the classical conductance for
the non-magnetic junction and compare it with that obtained in the earlier
theories. The proposed approach allows to reproduce the Maxwell and
Sharvin analytical limits in such terms that they smoothly transform from
one to the other exactly without some additional factors like y in Refs.
[12,23,25]. Indeed, at K — oo (a/l — 0) the integral in Eq. (8) vanishes,
hence, the conductance transforms into the ballistic Sharvin one, G = Gg.
The integral in Eq. (8), at small K < 1 (a/l > 1), reads G - %) that gives
accurate solution for the diffusive limit, G = (8/37)KGs = Gy. In contrast
to the Wexler and the followers’ solutions, in which the ballistic term is
always a part of (5) for any K, our solution (8) exactly transforms from the
ballistic to the diffusive limit of the conductance.

The normalized conductance by the Sharvin limit is given in Fig. 2a
for the four solutions of the problem, the result of the present work is
shown as R = G/Gs. The ratios R, = G/Gs, Ry = Gy/Gs and
R4 = Gw/Gs correspond to the solutions by Mikrajuddin et al. with
y = % _[(')oo e KXsinc(x) dx, by Nikolic and Allen with
Y = (1 4+ 0.83K)/(1 + 1.33K) and, finally, by the Wexler approach with
flexible y, respectively. The comparison of the relative differences of
the conductance to R;, which is displayed in Fig. 2b, shows that the
Mikrajuddin solution is the closest one to our result. The Nikolic-Allen
solution Gy~ with relevant ¥, shows the maximal difference of 15.8%
with ours at a/l = 1. It should be noticed, the presented Gy~ is the
lowest order solution with a maximal deviation of 1.0% against the most
exact summed-up series solution in [23]. The Wexler solution shows the
intermediate deviation of 12.9% at a/l ~ 0.75. We believe that the strong
assumption created by Wexler [Ref. [12], the paragraph after Eq. (42)],
where the numerical coefficient 9/8 is replaced by 1 at the Knudsen-
Sharvin limit, and the one which is made by Nikolic and Allen [Ref.

1.0 1 Quasi-ballistic region
‘ R, Present work
‘,‘ ........ R, Mikrajuddin ef al.
W —— R, Nikolic et al.
o \ h
Q< A —--=--= R, Wexler, flexible y
0.5F
a
0.0 1 1 1 L
0 2 4 6 8 10
all
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[23], the paragraph after Eq. (59)], where the numerical coefficient 3/4
is also replaced by 1 at the same limit, could be a cause of the deviations
in the vicinity of the Sharvin limit reported above.

Finally, it should be noticed that some experimental works manip-
ulate with y in Eq. (5), in order to achieve the desired fitting, con-
sidering y = 0.7-0.75 as a reduced constant, e.g. [2,18,19]. We assume
that their reduced value of y originates from the striving to compensate
the inaccuracy of the Wexler model for the quasi-ballistic region
a/l = 0.25 — 4.0, Fig. 2b, nevertheless that it can give a valuable de-
viation from a real value for [, being estimated at the larger scales, e.g.
for a/l ~ 10.

3.2. Conductance of the golden nanocontacts

The experimental data by Erts et al. [18] is considered for a quan-
titative comparison with our theory. The conductance for the golden
NCs was measured with different dimensions and fitted by Wexler’s
model finally resulting in [ ~ 3.8nm [18]. The drastic reduction of [ in
the NCs was attributed to a high density of scattering centers, which are
created during the point contact formation process.

Considering the golden contacts in the ballistic conductance regime,
we found that the experimental points from Ref. [18] lie predominantly
between the straight lines of the Sharvin conductance at kA" = 0.8 A"
and kf" = 0.9 A Fig. 3a. The Fermi wave-number in the bulk for the
gold can be estimated using the electron density n = 5.9 x 102 cm 3,
and thus k2" = (372n)1/3 = 1.205 K" [Ref. [36], Chapter 1, Table 1.1],
the value corresponds to the line 5 for G in a contrast with lines 1-4 in
Fig. 3a.

It makes sense to go beyond a ballistic conductance regime in
analysis of the experimental data of Erts et al. [18], because most
probably, they refer to the quasi-ballistic regime of the conductance
(see Fig. 2). Fig. 3b shows theoretical curves of the contact conductance
derived from (8), where the kﬁ“and  values were considered as in-

dependent parameters. The fitted curves 1 - 4 refer to
kAt =11&", kU= 104" Kk =09A" and kP =085A" with
I =40nm, [ =60nm, | =100nm and [=38.0nm, respectively.

Utilizing (2) in the form n = k2"/(7 1 G, p\’,*“), where p\’,“‘ = 22.14Q-nm,
the related parameters correspond to n=>51x
103cm™3, n = 3.09 X 102cm3, n = 1.67 X 10%*cm™3 and
n = 4.15 x 1022cm~3 for the curves 1 - 4, respectively. It seems that the
experimental points lie predominantly on the curve 4. Moreover, the
curve 4 has the closest value by n, which is estimated in Ref. [36].
The experimental data, which cover not only quasi-ballistic but also
the diffusive regimes of the conductance as well, might be determina-
tive to verify our theoretical model. Fortunately, experiments of Jensen
et al. [37] with golden NCs extend further the measurement range,

40 T T T T
Quasi-ballistic region
< opo Mikrajuddin ef al. ]
=3 . .
~ 20 15.8 % —-—-= Nikolic et al.
= I 1
S X -+ Wexler, flexible y
— e T~
&
> 0
&
" -10
&
20k b
b
230 L L L L
0 2 4 6 8 10

afl

Fig. 2. (a) The conductance ratios Ry of the different models, where R, = G/Gs, R, = G/Gs, Ry = Gy/Gs and Ry = Gy/Gs correspond to the models of the present
work, Mikrajuddin, Nikolic-Allen and Wexler approach with flexible y, respectively. The arrows 1 and 2 point to the ballistic and diffusive limits, respectively. (b)

The relative difference for the relevant ratios in respect to R;.
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Fig. 3. The conductance of the golden NCs with various contact dimensions.
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(a) Theoretical curves 1-5, ascribed to the ballistic regime at

kU= 08K, k' =09A", kK =10&", kf'=114A" and kA" = 1.2 A", respectively. (b) Curves 1-4 correspond to kA" = 1.1 A", kf" = LOA", k' =094,
and k,f-‘“ =085A" with = 4.0 nm, [ =6.0nm, [ =10.0nm and [ = 38.0 nm, respectively. The black dots refer to the experimental data [18].
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Fig. 4. The conductance of the golden NCs with the various contact radius. The
red circles are the data adapted from Fig. 4 in Ref. [37]. The ballistic limit is
estimated at k" = 0.9]’(1, while the curve 1 is obtained from Eq. (8) with
k" =09&K" and I = 38 nm.

which was partly covered by Erts et al., towards the diffusive regime of
the conductance. Fig. 4 shows the best fit of our model Eq. (8) to the
Jensen data. The theory matches the experimental data almost ideally
with the fitting parameters k2" = 0.9A " and | = 38 nm. Both datasets
by Erts and Jensen are collected in the inset of Fig. 4 together, keeping
the linear scale for G.

The remaining discrepancies in ki values with respect to the
textbook references, as well as the large scatter in the estimated [, which
may satisfactorily describe the existing experimental data, should not
raise doubts about the correctness of the approach: the lateral shape
deviation from the ideal circular orifice and the opening angle of the
constriction might also influence the conductance quantitatively, giving
a correction up to ~50% [38].

3.3. Domain wall resistance in magnetic nanowires

We apply the developed model to calculate the conductance of a
magnetic NW with and without single DW. It demonstrates the full
range of the spin-resolved ballistic and diffusive electron transport re-
gimes, that is suited to explain a DW resistance behavior, for example,
in NigoFe,y Permalloy (Py) [39], Co/Ni [40,41] and Co NWs [42]. Since
a difference in resistance of NWs with and without DW is a subject of
our interest, only DW contribution AR = (Rpw + Rxw) — (Rp + Ryw) is
calculated for a wide range of diameters, Fig. 5a. Thus, the resistance of
the homogeneous wire’s segments, Ryw = 4oy Inw/7d?, cancels in the
difference, where Iw is total length of NW. The other terms
Row@ = VIUPYO + IPV©) are resistances of a DW or an interface
between segments of the composite NW. The spin-dependent currents
IPY® are estimated within the general magnetic case of the hetero-
junction Eq. (6) with low bias approach, when the integral distribution
is voltage-independent. A spin-bands transition has been taken into
account for the case with DW (Rpw), while the case without DW as-
sumes D;; = 1.0 for R, in the case of homogeneous NW. The assign-
ment of spin sub-bands with respect to the quantization axis is opposite
in the case of the opposite direction of the domain’s magnetizations,
Fig. 5b. The vortex states and the area between them in [39] are sim-
plified to 1D DW representation in our case similarly to Ref. [40,41].
The DW impact is integrated into the present model in the same way as
in Ref. [29], where D, for the DW is considered as an exact analytical
solution for the sloping potential profile between two spin-split con-
duction bands. The values of the spin-dependent density of states (DOS)
at the Fermi level are taken proportional to kr,. The spin diffusion
length, the length of the spin conservation, is assumed to be much
larger than the fixed DW width (dpw).

The model estimations are compared with experimental data of the
resistance difference AR in Py [39], Co/Ni [40] and Co nanowires [42],
which are shown as symbols in Fig. 5a. The first experimental point
AR = 0.3Q is shown as magenta triangle for Py NW with d = 350nm
[Ref. [39], Fig. 4a] that corresponds to the case l;/]; = 4.5. The second
experimental point (green diamond) with AR ~ 1.2Q referes to Co/Ni
NW with d = 80nm [Ref. [40], Fig. 2b and c]. Red square points cor-
respond to AR =~ 2.178Q and AR ~ 7.5Q for Co NW with d = 50 nm and
d = 35nm, respectively [Ref. [42], Fig. 1]. The black dashed line, which
is drawn for [;/], = 4, fits well the experimental points except for the



A. Useinov, et al.

105 C T T T |
a
10l --- W,=4 ]
— ,=5
10°F 3
@ , Double DW
% 10°E assumption 3
10" ¢ Exp. data: 3
A Wong et al.
10°k <& Mohammed ef al. i
0.0 Ebels et al.
10-1 L L L
0.1 1 10 100

d (nm)

Journal of Magnetism and Magnetic Materials 508 (2020) 166729

A-&. DOSII

DOS I

Fig. 5. (a) Individual impact of the DW resistance in NW versus its diameter d. The model parameters for the dashed black curve are [, = 3.0nm, /; = 12.0 nm, and for
the solid blue line: [, = 2.5nm, /; = 12.5nm; Both curves calculated at k™ = 1.08 A, k4™ = 0.61 A, dpw = 3.0nm. Experimental points by Wong, Mohammed and
Ebels et al. correspond to Py, Co/Ni and Co NWs with single DW, respectively. (b) The sketch of the two vortex magnetic states and electron transitions with the DOS
differences: without (left) and with DW (right). The vortex magnetic states are shown similar to that in the experimental paper [39] and marked as the color thin
arrows, while the theoretical DW representation is simplified to 1D case and magnetization is shown as the large gray arrows.

case of Co NW with d = 35nm. Following the assumption that this point
corresponds to the case of two DWs connected in series, the additional
red circle is depicted as half of the AR for d = 35nm as a reduction to
the case of single DW. It should be noticed, Ebels et al. [42] has also
considered the assumption of the presence of two DWs for d = 35nm.

In general, it is found that AR rapidly reduces with increasing of d,
however, the curve’s slope decreases when the conductance transforms
from quasi-ballistic to a diffusive regime for the spin-up conductance
channel at d ~ 21;. The curve for AR is sensitive to the mean free path
ratios. Experimental measurements of the spin-split [, are accessed in
[43,44], theoretical estimations are available in Ref. [22]. The con-
sidered kg-values are also consistent with the literature data: kg | are
similar to Mu-metal (Py-type) compounds [29]. It should be noticed
also that, taking into account the spin-flip effect and spin accumulation
might further improve the consistency of the material parameters uti-
lized in the data fittings.

4. Conclusions

In the present work, a quasi-classical transport model is developed as an
approach for computing of electron transport through the point-like contact.
The spin-resolved quantum, ballistic, quasi-ballistic and diffusive regimes of
the transport are covered by the theory. The solution includes the boundary
conditions in terms of the quantum-mechanical transmission coefficient for
the NC interface. The NC interface potentially can be replaced by any
quantum object, where the transmission coefficient can be spin-resolved,
depending on the applied voltage, the strength of the magnetic field or any
other external parameter affecting the energy profile properties. As a result,
the analytical solution is derived for the general spin-resolved case for the
system, obeying cylindrical symmetry. It doesn’t require so much computer
programming to represent it in the form, which allows to make the com-
parison and fitting to the experiment. The theory has great generality: it can
handle with spin-resolved conduction of the nano-scale objects such as NCs,
single and multi-barrier tunnel junctions, MTJs with embedded nano-
particles, allowing in some cases to see the quantized conductance, etc.

Finally, we applied our general expression for the current through
the NC to a particular problem of the conductance between two sepa-
rated metallic (nonmagnetic) leads, which are connected by a short and
small orifice and filled with the same metal. The simple expression for
the conductance that we have got from our general solution provides
the smooth functional transition between the Sharvin ballistic and
Maxwell-Holm diffusive limits without residual terms. The theory fits
quite well the existing experimental data for the golden NCs. Another
application is also shown, which concerns the DW resistance in

ferromagnetic nanowires. The comparison to the existing experimental
data shows a reasonable quantitative agreement, confirming the wide
range of applicability.
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