期刊论文详细信息
SCRIPTA MATERIALIA 卷:146
Probabilistic design of a molybdenum-base alloy using a neural network
Article
Conduit, B. D.1  Jones, N. G.2  Stone, H. J.2  Conduit, G. J.3 
[1] Rolls Royce Plc, POB 31, Derby DE24 8BJ, England
[2] Univ Cambridge, Dept Mat Sci & Met, 27 Charles Babbage Rd, Cambridge CB3 0FS, England
[3] Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England
关键词: Modeling;    Refractory metals;    Forging;    Mechanical properties;    Neural network;   
DOI  :  10.1016/j.scriptamat.2017.11.008
来源: Elsevier
PDF
【 摘 要 】

An artificial intelligence tool is exploited to discover and characterize a new molybdenum-base alloy that is the most likely to simultaneously satisfy targets of cost, phase stability, precipitate content, yield stress, and hardness. Experimental testing demonstrates that the proposed alloy fulfills the computational predictions, and furthermore the physical properties exceed those of other commercially available Mo-base alloys for forging-die applications. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_scriptamat_2017_11_008.pdf 1095KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:0次