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A B S T R A C T

An artificial intelligence tool is exploited to discover and characterize a new molybdenum-base alloy that is
the most likely to simultaneously satisfy targets of cost, phase stability, precipitate content, yield stress, and
hardness. Experimental testing demonstrates that the proposed alloy fulfills the computational predictions,
and furthermore the physical properties exceed those of other commercially available Mo-base alloys for
forging-die applications.

© 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

The contemporary approach to develop new materials is experi-
ment driven trial and improvement [1]. This approach may take up to
twenty years to design and verify a new material. The long lead time
rules out designing new materials alongside products, instead forc-
ing engineers to compromise products around the shortcomings of
pre-existing materials. The opportunity to discover materials compu-
tationally has the potential to empower engineers to design optimal
materials at the same time as new products [2], bringing materials
into the heart of the design process. Previous approaches to design
new materials on a computer include ranking compositions with a
Pareto set [3–5], characterizing materials with a principal component
analysis [6], robust design [7], and the orthogonal optimization of
different properties [2,8-11]. However, these methods cannot simul-
taneously optimize the compromise between material properties and
capture the deep correlations between composition and final prop-
erties. Therefore, in this paper, a new artificial intelligence tool [12]
that can capture the full composition-property relationship is used
to propose the new Mo-base alloy for forging die applications that is
most likely to satisfy all target properties simultaneously.

Mo-base alloys offer exceptional strength at high temperature.
This makes them suitable for refractory applications including fission
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and fusion reactors, rocket engine nozzles, furnace structural com-
ponents, and forging dies. However, the next generation of forging
applications will demand yet higher operating temperature requir-
ing a new generation of Mo-base alloys. Existing Mo-base alloys such
as MHC (1.1 wt% Hf, 0.1 wt% C, balance Mo), TZC (1.2 wt% Ti, 0.1 wt%
C, 0.3 wt% Zr, balance Mo), TZM (0.5 wt% Ti, 0.02 wt% C, 0.08 wt% Zr,
balance Mo), and ZHM (1.2 wt% Hf, 0.1 wt% C, 0.4 wt% Zr, balance
Mo) [13] contain minimal strengthening precipitates, so there is an
opportunity to optimize the content of HfC and other carbides in Mo-
base alloys to improve strength at high-temperature. Critically, the
effective exploitation of strengthening precipitates requires a firm
understanding of the relationship that exists between the alloy com-
position and it phase stability, strength and cost; a multidimensional
problem that is an ideal application of an artificial intelligence tool.

The first section of this paper outlines the artificial intelligence
tool and specifies the chosen targets for the relevant material prop-
erties: cost, phase stability, HfC content, yield stress, and hardness.
In the second section, the tool is used to propose the new Mo-base
alloy that is most likely to exceed the design targets. The final section
presents experimental results for the phase stability, HfC content,
and hardness to verify the model predictions and demonstrate that
the alloy has properties that surpass those of other commercially
available Mo-base forging die alloys.

The goal of the neural network tool is to predict the composition
and processing variables that are most likely to produce a mate-
rial that fulfills the multi-criteria target specification. The tool and
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methodology follows the prescription developed in Ref. [12]. The tool
first constructs a predictive model for each property as a function
of the composition, which for the Mo-base alloys presented in this
paper comprises of the elements {Nb, Ti, C, Zr, Hf, W, Mo}. The tool can
then calculate the likelihood that a putative composition fulfills the
target specification, so that it can search composition space for the
alloy most likely to meet the target specification.

Materials must fulfill a wide ranging specification to ensure that
they best meet the needs of their target application. The properties
that were optimized in the design of the Mo-base alloys are shown in
Table 1. With properties depending on contrasting physics, for each
property a different source of data must be adopted, which are refer-
enced in the tables. The cost per cycle – the effective cost per usage
as a forging hammer, which must be minimized – is predicted using
a model of the weighted commercial elemental prices. The alloys
with the most suitable mechanical properties are expected to be
those that possess a Mo solid solution containing only HfC and other
carbide precipitates. The low diffusion constant in Mo alloys below
1500 ◦ C [14,15] means that the phase stability and HfC content
should reflect the likely room temperature condition of an as-cast
alloy. The thermodynamic phase stability and HfC content is evalu-
ated by a neural network trained on a database comprising of CAL-
PHAD results, with the data sourced from the SSOL6 database [16,17].
The use of a neural network to predict phase stability dramatically
speeds up the alloy optimization process as it is computationally less
intensive than individual thermodynamic calculations. It is essen-
tial for forging-die alloys to be strong, particularly in compression,
so both the yield stress and also the hardness must be maximized.
However, the yield stress and hardness cannot be reliably calculated
by computer modeling from first principles. Instead a database of
experimental results for all of the properties as a function of compo-
sition is compiled from the sources referenced in Table 1 comprising
of alloys in an as-cast condition and exclusively of the Mo solid solu-
tion phase behavior prescribed by the thermodynamic predictions.
The scarcity of hardness data means that the neural network can be
improved if it is supplemented with ultimate tensile strength data.
The neural network formalism [12] can automatically identify the
link between ultimate tensile strength and hardness (known to be
approximately ×3 [18]) from common compositions, and then use
the surplus ultimate tensile strength data at other compositions to
guide the extrapolation of the hardness model.

After the database of material properties in Table 1 is compiled, a
neural network model is trained on that data to predict the physical
properties for a given composition. The form of neural network and
approach to training follows that in Ref. [12] used to develop Ni-base
superalloys. The design variables were the elemental concentration
of {Nb, Ti, C, Zr, Hf, W, Mo}. Typically three hidden nodes gives the
best fitting neural network. The neural network model predicted not
only the expected value of the physical property but also the uncer-
tainty associated with it, accounting for experimental uncertainty in
the underlying data, the uncertainty in the extrapolation of the train-
ing data [19,20], and the uncertainty in the processing conditions of
as-cast alloys.

In this approach, the individual material properties are converted
into a single merit index that describes the likelihood that the mate-
rial properties (V) satisfies the design criteria (T) is L = V[S−1(V−T)].

Table 1
The approach used to predict properties, the property targets, number of experimental
points used to train neural network models, and references for the data are shown.

Property Target Approach Data

Cost < 52$/cycle Physical [31–35]
Phase stability >81 wt% CALPHAD [16,17,36-40]
HfC content >1 wt% CALPHAD [16,17,36-40]
Yield stress at 1000 ◦ C > 398MPa Neural net 212 [41,42,42-51]
Hardness at 1000 ◦ C > 1908MPa Neural net 740 [41,42,42-66]

Here ,V is the multivariate cumulative normal distribution func-
tion and S is the covariance matrix [21]. Combining the individual
property likelihoods enables an estimate to be made of the like-
lihood that the alloy will fulfill the whole specification. Critically,
this overall likelihood will be much lower than that of an individual
property target being met. For example, for a five-part specification,
if the material has a 50% likelihood of fulfilling each design crite-
rion, the overall likelihood that it simultaneously fulfills five criteria
is 0.55 ≈ 0.03, so 3%. It is therefore crucial that the likelihood of the
material meeting the conformance specification is maximized. The
use of likelihood also allows the tool to explore and select the ideal
compromise between material properties, which is inaccessible with
methods that do not account for likelihood, such as a principal com-
ponent analysis [6] and robust design [7]. Similarly, the design tool
may interpolate between experimental data, exploring more compo-
sitions than would be accessible by an experimentally driven search.
Using a neural network to interpolate allows us to capture deeper
correlations than linear regression methods such as those used in
principal component analysis [6].

As well as predicting material properties, the tool must simulta-
neously optimize them against the set targets. Previous optimization
techniques included running over a pre-determined grid of com-
positions, and then sieving them with trade-off diagrams [10], or
a Pareto set [3–5]. However the expense of these methods scales
exponentially with the number of design variables rendering them
impractical. Another approach is to use genetic algorithms [22,23],
but this approach is not mathematically guaranteed to find the
optimal solution [24,25], and it displays poor performance in high
dimensional problems [24,25]. Here, we maximize the logarithm of
the likelihood log(L) to ensure that in the region where the material
is predicted to not satisfy the specification the optimizer runs up a
constant gradient slope that persistently favors the least optimized
property. We explore the high-dimensional composition space with
a random walk which uses a step length that is comparable to
the accuracy with which a material could be manufactured, this is
0.1 wt% for the entire composition excluding the possibility of
microsegregation. The tool typically search over ∼108 sets of design
variables in ∼1 h to explore the space and search for an optimal
material.

With the neural network tool in place it is now used to design a
new Mo-base forging die alloy. Once, designed, the properties of the
alloy are subsequently verified by experiment. The goal is to design
a new Mo-base alloy that offers both improved high-temperature
hardness and concomitant greater lifetime with lower in-service
costs at ∼ 1000 ◦ C. This case study not only serves as an indepen-
dent test of the alloy design approach, but moreover leads to an alloy
with properties that exceed those of other, commercially available
Mo-base alloys.

The first step to design an alloy is to set the target specification.
This is shown in Table 1 and compared with commercially available
Mo-base alloys in Fig. 1 (a). The alloy should be cheaper than the
previous cheapest Mo forging alloy, TZC, at 52$cycle−1. To avoid
forming deleterious phases that could weaken the alloy it must have
good phase stability, defined as the concentration of the Mo-base
solid solution rather than other deleterious phases, comparable or
better than previous Mo alloys of 81 wt %. At the same time, the Mo
alloy should be strengthened by HfC and other carbides, so there
should be at least 1 wt % HfC precipitate formation. The yield stress
should be greater than 398 MPa at 1000 ◦ C, that of the best alloy
available, ZHM. The alloy should also have a hardness higher than the
highest of the Mo alloys, MHC, of 1908 MPa at 1000 ◦ C. These targets
mean that the new Mo-base alloy will have properties superior to
those of any commercially available alloy. Neural network models
for the cost, phase stability, volume fraction of the reinforcing phase,
yield stress, and hardness are trained using data from the references
in Table 1. The neural networks will then be used to optimize the
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Fig. 1. (a) Summary of properties for the Mo-base alloy. For each listed property the
gray box refers to the acceptable target properties, the dark gray is the three-sigma
uncertainty on the theoretical prediction. The points refer to experimentally measured
values with the proposed alloy, MHC, TZC, TZM, and ZHM. (b) The compro-
mise between hardness and cost per cycle made in the design of the Mo-base alloy.
The white shaded areas show regions that fail to meet hardness and cost targets. The
color of shading shows the likelihood of exceeding all of the targets, following the
scale on the right. The white circles show the proposed and existing alloys. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

composition to search for the alloy most likely to exceed the target
specification.

The composition proposed in Table 2 has a 99.1% likelihood of
meeting the target specification in Fig. 1 (a), it notably has high levels
of Hf at 9 wt % to allow 4 wt % of HfC precipitates to form, alongside
other carbides, to strengthen the alloy. The theoretical predictions for
the alloy all fall within the required targets, with the alloy being sub-
stantially cheaper than required at 43$cycle−1, and the yield stress
of 722 MPa and hardness of 2274 MPa being considerably greater
than the target specification. In fact, it is predicted that all of the
properties of the alloy will simultaneously exceed all properties of
commercially available Mo-base alloys. The composition is quoted
with a range of concentrations that all satisfy the target criteria.

Table 2
The composition of the Mo-base alloy (wt%). The
design tolerance shows all compositions that are
predicted to fulfill the target specification.

Optimal composition (wt%)

Nb 5.7 ± 0.2 Zr 0.9 ± 0.1
Ti 1.0 ± 0.1 Hf 9.0 ± 0.1
C 0.20 ± 0.01 W 0.5 ± 0.2
Mo Balance

Inevitably, the designer must make a compromise between the
different properties of an alloy. This can be directly visualized,
Fig. 1 (b) illustrates the trade-off made between hardness and cost.
The positive trend of the bands of iso-likelihood shows how alloys
with good mechanical properties are also more expensive, due to
increased but expensive Hf additives. This landscape allows an engi-
neer to select the ideal compromise for their application, for example
with the aid of an Ashby plot [26]. The proposed alloy is the one most
likely to fulfill the targets highlighted as it lies in the region of highest
likelihood. This is located at a hardness far higher than the minimum
hardness target since there is a large uncertainty on hardness predic-
tions, but nearer to the maximum cost target since there is a smaller
uncertainty on predictions of cost. The rapidly varying likelihood of
satisfying all of the targets reflects how other properties vary rapidly
due to the underlying and locally optimized composition changing
markedly. This variation is similar to that seen in the design of the
Ni-base superalloys [12].

The proposed alloy is predicted to fulfill the target specification.
However, experiments will provide the true test of the performance
of the new alloy. The synthesis of the proposed Mo-base alloy starts
with pelletized elements having purity greater than 99.9%, that are
arc-melted into a 50 g ingot through five successive inversion and
re-melt cycles. Brinell hardness testing was conducted on multiple
specimens following a 15 minute dwell at the testing temperature.
Measurement of the indentation was obtained using SEM.

Fig. 2 (a) shows a secondary electron micrograph of the alloy.
The emergence of a single Mo-rich matrix phase strengthened by
carbide precipitates verifies the stability prediction. Spot energy dis-
persive X-ray spectroscopy confirmed that the white precipitates are
predominantly HfC, which acts as the main strengthener, with addi-
tional strengthening from Ti, Nb, Ta, and W that are fully miscible
above 882 ◦ C [27] in the Mo-rich solid solution and so minimal dele-
terious phases were formed. The fraction of HfC is 4 wt %, in line with
theoretical predictions and greater than that in MHC of 0.5 wt%, so
the alloy should itself have good compressive strength. A trial heat
treatment of 1000 ◦ C for 20 h showed no microstructure evolution,
confirming the stability with respect to microstructural evolution.
Finally, the hardness is measured as a function of temperature. Fig. 2
(b) shows that the alloy possesses a significantly higher hardness
than the commercially available alloys at high temperatures, making
it particularly suitable for refractory applications.

The experimental results are summarized in Fig. 1 (a). The four
crucial properties of the proposed alloy (cost, phase stability, vol-
ume fraction of the HfC reinforcing phase, and hardness) are in
accordance with the theoretical predictions, exceed the targets, and
surpass the properties of the commercial alloys MHC, TZC, TZM, and
ZHM. Furthermore, the neural network tool has been used to propose
another Mo-base alloy [28] but with NbC based hardeners, which
has also been experimentally verified. This both demonstrates the
capabilities of the materials optimization approach and has identi-
fied an alloy that may have potential refractory applications, and in
particular as a forging die.

A new computational tool was used to propose the Mo-base alloy
most likely to simultaneously fulfill five different physical criteria
given the experimental and computational data available. The new
proposed alloy has been experimentally verified to have properties
that exceed other, commercially available Mo-base alloys. The Mo-
base alloy has the ideal properties to be used as a forging die for
use on future high strength superalloys at the high temperatures
∼1000–1100 ◦ C.

The neural network tool has also been used to design another
Mo-based alloy based on niobium precipitates [28], and two nickel-
base alloys [29,30] that have also been experimentally verified [12].
The capability to rapidly discover materials computationally should
empower engineers to instantly optimize bespoke materials for their
application, bringing materials into the heart of the design process.
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Fig. 2. (Color online) (a) Secondary electron micrograph image for the Mo alloy. (b) Hardness as a function of temperature, the black line shows the theoretical prediction and
gray the uncertainty. The points refer to experimentally measured values with the optimal alloy, MHC, TZC, TZM, and ZHM. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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