NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS | 卷:332 |
Influence of radiation damage on xenon diffusion in silicon carbide | |
Article; Proceedings Paper | |
Friedland, E.1  Gaertner, K.2  Hlatshwayo, T. T.1  van der Berg, N. G.1  Thabethe, T. T.1  | |
[1] Univ Pretoria, Dept Phys, Pretoria, South Africa | |
[2] Univ Jena, Inst Festkorperphys, D-07743 Jena, Germany | |
关键词: Silicon carbide; Diffusion; Radiation damage; | |
DOI : 10.1016/j.nimb.2014.02.109 | |
来源: Elsevier | |
【 摘 要 】
Diffusion of xenon in poly and single crystalline silicon carbide and the possible influence of radiation damage on it are investigated. For this purpose 360 keV xenon ions were implanted in commercial 6H-SiC and CVD-SiC wafers at room temperature, 350 degrees C and 600 degrees C. Width broadening of the implantation profiles and xenon retention during isochronal and isothermal annealing up to temperatures of 1500 degrees C was determined by RBS-analysis, whilst in the case of 6H-SiC damage profiles were simultaneously obtained by alpha-particle channelling. No diffusion or xenon loss was detected in the initially amorphized and eventually recrystallized surface layer of cold implanted 6H-SiC during annealing up to 1200 degrees C. Above that temperature serious erosion of the implanted surface occurred, which made any analysis impossible. No diffusion or xenon loss is detected in the hot implanted 6H-SiC samples during annealing up to 1400 degrees C. Radiation damage dependent grain boundary diffusion is observed at 1300 degrees C in CVD-SiC. (C) 2014 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_nimb_2014_02_109.pdf | 1208KB | download |