期刊论文详细信息
PHYSICA D-NONLINEAR PHENOMENA 卷:237
Poisson geometry and first integrals of geostrophic equations
Article
Khesin, Boris1  Lee, Paul1 
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
关键词: geostrophic equations;    enstrophy invariants;    Poisson structure;    wasserstein space;    Hamiltonian reduction;    diffeomorphism group;   
DOI  :  10.1016/j.physd.2008.03.001
来源: Elsevier
PDF
【 摘 要 】

We describe first integrals of geostrophic equations, which are similar to the enstrophy invariants of the Euler equation for an ideal incompressible fluid. We explain the geometry behind this similarity, give several equivalent definitions of the Poisson structure on the space of smooth densities on a symplectic manifold, and show how it can be obtained via the Hamiltonian reduction from a symplectic structure on the diffeomorphism group. (c) 2008 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_physd_2008_03_001.pdf 254KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次