期刊论文详细信息
NEUROCOMPUTING 卷:102
Optimizing extreme learning machines via ridge regression and batch intrinsic plasticity
Article
Neumann, Klaus1  Steil, Jochen J.1 
[1] Univ Bielefeld, Fac Technol, Res Inst Cognit & Robot, CoR Lab, D-33675 Bielefeld, Germany
关键词: Neural network;    Learning;    Extreme learning machine;    Batch intrinsic plasticity;    Ridge regression;    Regularization;   
DOI  :  10.1016/j.neucom.2012.01.041
来源: Elsevier
PDF
【 摘 要 】

Extreme learning machines are randomly initialized single-hidden layer feed-forward neural networks where the training is restricted to the output weights in order to achieve fast learning with good performance. This contribution shows how batch intrinsic plasticity, a novel and efficient scheme for input specific tuning of non-linear transfer functions, and ridge regression can be combined to optimize extreme learning machines without searching for a suitable hidden layer size. We show that our scheme achieves excellent performance on a number of standard regression tasks and regression applications from robotics. (C) 2012 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_neucom_2012_01_041.pdf 886KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次