期刊论文详细信息
RENEWABLE ENERGY 卷:133
Assessment of surface wind datasets for estimating offshore wind energy along the Central California Coast
Article
Wang, Yi-Hui1,2  Walter, Ryan K.1,3  White, Crow1,2  Farr, Hayley2  Ruttenberg, Benjamin I.1,2 
[1] Calif Polytech State Univ San Luis Obispo, Ctr Coastal Marine Sci, San Luis Obispo, CA 93407 USA
[2] Calif Polytech State Univ San Luis Obispo, Dept Biol Sci, San Luis Obispo, CA 93407 USA
[3] Calif Polytech State Univ San Luis Obispo, Phys Dept, San Luis Obispo, CA 93407 USA
关键词: Offshore wind energy;    Scatterometers;    Reanalyses;    Regional atmospheric models;    Surface winds;    Tradeoff analysis;   
DOI  :  10.1016/j.renene.2018.10.008
来源: Elsevier
PDF
【 摘 要 】

In the United States, Central California has gained significant interest in offshore wind energy due to its strong winds and proximity to existing grid connections. This study provides a comprehensive evaluation of near-surface wind datasets in this region, including satellite-based observations (QuikSCAT, ASCAT, and CCMP V2.0), reanalysis (NARR and MERRA), and regional atmospheric models (WRF and WIND Toolkit). This work highlights spatiotemporal variations in the performance of the respective datasets in relation to in-situ buoy measurements using error metrics over both seasonal and diurnal time scales. The two scatterometers (QuikSCAT and ASCAT) showed the best overall performance, albeit with significantly less spatial and temporal resolution relative to other datasets. These datasets only slightly outperformed the next best dataset (WIND Toolkit), which has significantly greater temporal and spatial resolution as well as estimates of winds aloft. Considering tradeoffs between spatiotemporal resolution of the underlying datasets, error metrics relative to in-situ measurements, and the availability of data aloft, the WIND Toolkit appears to be the best dataset for this region. The framework and tradeoff analysis this research developed and demonstrated to assess offshore wind datasets can be applied in other regions where offshore wind energy is being considered. (C) 2018 Elsevier Ltd. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_renene_2018_10_008.pdf 1030KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次