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23 Abstract

24 In the United States, Central California has gained significant interest in offshore wind energy due 

25 to its strong winds and proximity to existing grid connections. This study provides a 

26 comprehensive evaluation of near-surface wind datasets in this region, including satellite-based 

27 observations (QuikSCAT, ASCAT, and CCMP V2.0), reanalysis (NARR and MERRA), and 

28 regional atmospheric models (WRF and WIND Toolkit). This work highlights spatiotemporal 

29 variations in the performance of the respective datasets in relation to in-situ buoy measurements 

30 using error metrics over both seasonal and diurnal time scales. The two scatterometers (QuikSCAT 

31 and ASCAT) showed the best overall performance, albeit with significantly less spatial and 

32 temporal resolution relative to other datasets. These datasets only slightly outperformed the next 

33 best dataset (WIND Toolkit), which has significantly greater temporal and spatial resolution as 

34 well as estimates of winds aloft. Considering tradeoffs between spatiotemporal resolution of the 

35 underlying datasets, error metrics relative to in-situ measurements, and the availability of data 

36 aloft, the WIND Toolkit appears to be the best dataset for this region. The framework and tradeoff 

37 analysis this research developed and demonstrated to assess offshore wind datasets can be applied 

38 in other regions where offshore wind energy is being considered.

39
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46 1. Introduction

47 Over the last few decades, renewable energy sources have become an increasingly 

48 important component of broader energy portfolios. Costs of renewable energy have decreased 

49 substantially, and more governments recognize the importance of reducing greenhouse gas 

50 emissions. As a result, governments at many levels have set targets for increasing renewable 

51 energy generation. For example, across the European Union, the European Parliament and Council 

52 has set a target of 20% for energy consumption from renewables by the year 2020 (2020 Climate 

53 & Energy Package). Additionally, many states within the United States have adopted increased 

54 renewable energy portfolio targets. This includes California, which has set a goal to supply 50% 

55 of energy through renewable sources by the year 2030 (SB350-Clean Energy and Pollution 

56 Reduction Act of 2015). 

57 In response to governmental initiatives and decreases in costs, deployment of renewable 

58 energy projects has been increasing rapidly, with an emphasis on photovoltaic solar and land-based 

59 wind turbines [1]. Offshore wind turbines also have received considerable interest and investment, 

60 particularly in Europe [2]. Offshore wind energy has several advantages over solar and land-based 

61 energy sources since offshore winds tend to be stronger and more consistent than land-based winds 

62 [3] and are less likely to directly conflict with other land-use activities. Additionally, offshore wind 

63 energy production may be able to reduce discrepancies in production and demand that are difficult 

64 to alleviate with solar output because of its diurnal cycle. 

65 To best guide the evaluation and planning of offshore wind energy in a particular area, 

66 accurate wind datasets with sufficient temporal and spatial resolution are needed. Offshore winds 

67 typically exhibit temporal variability on interannual, seasonal, synoptic, and diurnal time scales. 

68 Furthermore, wind power is proportional to the cube of the wind speed, meaning that small changes 
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69 in wind speed (e.g., over the course of the day or with different seasons) can lead to drastic 

70 differences in power output. Also, for power generation to be most valuable, it will need to match 

71 grid demands and base load needs, which vary daily and seasonally. Thus, wind datasets long 

72 enough to capture interannual variability and with sufficient temporal resolution to resolve diurnal 

73 variability are required for estimating wind energy power production and value. In addition, 

74 understanding spatial variation in offshore wind power can help support site planning and 

75 assessment by highlighting areas with the greatest potential to generate power and therefore areas 

76 with the greatest potential value. Despite the importance of understanding temporal and spatial 

77 variations in offshore winds for assessing this renewable energy resource, previous work has rarely 

78 resolved both daily and seasonally cycles at multiple sites and/or over a large area. Moreover, the 

79 utilization of temporally-averaged (mean) wind speeds over an annual cycle can lead to large errors 

80 and mismatches in grid demand and production estimates over shorter (seasonal and daily) time 

81 scales. 

82 The lack of detailed assessments across a range of time scales and over broad spatial 

83 domains is mainly attributable to the absence of a single perfect offshore wind dataset with the 

84 appropriate temporal and spatial resolution. In-situ near-surface wind measurements from moored 

85 buoys are often available over long time periods (decades) with a very high temporal resolution 

86 (hourly or better), but these buoys are usually sparse (often >10-100 km apart). Remote sensing 

87 measurements of near-surface winds obtained from satellites equipped with scatterometers can 

88 measure vector wind fields across large areas that are more spatially resolved than buoy platforms, 

89 but the measurements are only available during satellite passes, at most several times per day [4]. 

90 Reanalysis products, which objectively combine both observations and numerical models, often 

91 have consistent temporal resolution over decades and contain winds at various vertical levels above 
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92 the surface, but have coarser spatial resolution compared to satellite-derived data. Finally, regional 

93 atmospheric models have some of the highest spatial and temporal resolution, including data aloft 

94 at various vertical levels; however, they often experience substantial error relative to in-situ 

95 observations and are sensitive to local parameterizations [5]. 

96 Previous studies have evaluated the performance of various wind datasets in different 

97 regions (see Carvalho et al. [3] and the references therein). Pickett et al. [6] and Tang et al. [7] 

98 assessed the performance of QuickSCAT satellite observations relative to local buoys along the 

99 West Coast of the United States, but they did not assess other datasets. Carvalho et al. [8] 

100 conducted a comprehensive comparison of satellite-based observations, reanalysis products, and 

101 the Weather Research and Forecast (WRF) regional model with five buoys in the Iberian Peninsula 

102 coast. Carvalho et al. [3] extended the analyses of Carvalho et al. [8] by including newer 

103 scatterometers (e.g. ASCAT). However, these studies focused on error metrics over one year and 

104 did not consider longer time periods or seasonal and diurnal variability. Alvarez et al. [9] used a 

105 longer time period (10 years) to evaluate satellite-based products and reanalysis products against 

106 in-situ buoy measurements in the southern Bay of Biscay. They found that QuikSCAT had the 

107 lowest bias in wind speed and wind direction and the Cross-Calibrated Multi-Platform (CCMP, 

108 blended satellite product) had the lowest error, but they did not include an analysis of the diurnal 

109 signal. 

110 Collectively, these studies and others (see Carvalho et al. [3] and the references therein), 

111 also suggest that the performance of different wind products varies by study region, indicating the 

112 need for site-specific analyses. The majority of site-specific evaluations of offshore wind data have 

113 focused on coastal waters along Europe, typically in association with existing or planned offshore 

114 wind farms (e.g. [3,8–10]). To date, all but one of the world’s offshore wind farms in operation 
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115 consist of fixed-bottom wind turbines located in shallow waters of less than 100 m. Yet, as 

116 technology advances, the cost of building floating wind turbines in water greater than 100 meters 

117 deep may be less than that of fixed-bottom platforms by 2030 [11]. The first MW-scale floating 

118 turbine was successfully deployed in the North Sea in 2009 [45]. In 2017, the world’s first floating 

119 offshore wind turbines were successfully launched with the Hywind project in Scotland, paving 

120 the way for future wind farms in deeper waters further from the coast [46]. With improvements in 

121 floating turbine technology, deployment of offshore wind farms is likely to increase in the future, 

122 particularly in areas with deeper shelf waters. Understanding wind patterns (both spatially and 

123 temporally) in these environments will be key to guiding and assessing marine renewable energy 

124 production.

125 Along the West Coast of the United States the continental shelf is narrow, such that waters 

126 are often >100 m deep only a few kilometers from shore. As a result, the majority of the ocean 

127 area with the potential for wind power production is located in deep waters where floating turbines 

128 would be necessary [12]. The Central California region considered in this study, spanning from 

129 south of Monterey Bay to Point Conception is characterized by moderately strong winds 

130 throughout the year (e.g., [13]; Figure 1). Additionally, this region is located in the vicinity of 

131 several existing connections to the state’s electrical grid, including the Morro Bay power plant 

132 (closed in 2014) and the Diablo Canyon nuclear power plant (California’s last remaining nuclear 

133 power plant slated to close in 2025). Finally, the study domain is outside of National Marine 

134 Sanctuary areas, where restrictions on disturbance to the seabed will likely preclude floating 

135 turbine deployment. Attracted by these features, private industry has shown great interest in 

136 pursuing permits from government agencies for the development of deep water, floating offshore 

137 wind farms (BOEM: https://www.boem.gov/California/). Therefore, a detailed analysis of the 
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138 available wind products in this region is needed. However, aside from a few simple analyses of 

139 winds (e.g., [14]), there are no comprehensive assessments of long-range, high-resolution wind 

140 products in this region. Without this information, it is difficult to accurately evaluate the power 

141 production potential of this region.

142 To address this knowledge gap, we conducted a comprehensive evaluation of near-surface 

143 winds from various datasets (satellite-based, model, reanalysis) and compared them to local buoy 

144 measurements. We used these datasets, which span nearly a decade and with up to 2-km spatial 

145 resolution, to assess error metrics (bias and root-mean-square-error) over seasonal and diurnal time 

146 scales. Using the results of these point-to-point comparisons, and consideration of the 

147 spatiotemporal resolution of each dataset and whether it provides data aloft, we examined tradeoffs 

148 between various dataset attributes (e.g. bias, error, spatial and temporal resolution, availability of 

149 data aloft) to identify the best dataset for offshore wind energy application. We then explored 

150 characteristics of the chosen dataset to reveal temporal changes in near-surface wind speeds across 

151 the domain along the Central Coast of California.  The framework we developed to evaluate the 

152 various products is readily applicable to other regions where similar analyses are needed, and the 

153 wind dynamics we reveal for the Central Coast can be used to support the generation of accurate 

154 and detailed estimates of potential power production in the region. 

155

156 2. Data and Methods

157 2.1 Study Domain

158 The Central Coast of California is located along the eastern boundary of the Pacific Ocean 

159 and features steeply sloping bathymetry. In this study, we considered the domain bounded by the 
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160 Monterey Bay National Marine Sanctuary to the north, the Channel Islands National Marine 

161 Sanctuary to the south, and the 1000 m isobath in the offshore direction, generally west (Figure 1). 

162 The offshore limit is the maximum water depth for offshore wind turbine installation based on 

163 current technology and industry experience [12]. Along this stretch of coastline, there are three 

164 existing connections to the state’s electrical grid: the Morro Bay power plant (closed in 2014), the 

165 Diablo Canyon nuclear plant (slated to close in 2025), and Vandenberg Air Force Base. This region 

166 is characterized by moderately strong and consistently equatorward winds throughout much of the 

167 year, particularly for the region north of Point Conception (e.g., [13,15]). A previous study 

168 suggested that the annual average of wind speed at hub height exceeds 7 m s-1, highlighting the 

169 potential for offshore wind farms [12]. 

170 FIGURE 1 LOCATION

171

172 2.2 Wind Datasets

173 2.2.1 Buoy observations

174 Near-surface winds in this study domain were obtained from moored buoys measuring 

175 winds at 5 m above the surface and reporting an average wind speed every ten minutes (i.e., the 

176 National Data Buoy Center (NDBC) continuous wind product, http://www.ndbc.noaa.gov/). We 

177 employed buoy data as a reference to represent true characteristics of near-surface winds, as is 

178 commonly done in the existing literature (e.g., [16]). While buoy measurements are the best 

179 available in-situ data, buoy measurements may be less reliable under strong winds [17], but these 

180 measurements are still likely the best estimates of true wind speeds. Among all datasets considered, 

181 the buoy dataset is the only to output near-surface winds at 5 m above the sea surface, with the 
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182 other datasets outputting near-surface winds at 10 m above the sea surface. Thus, to enable a direct 

183 comparison, we converted the buoy-measured wind speeds from 5 m to 10 m assuming a neutrally 

184 stable atmosphere following the method of Liu and Tang [18]. This is a reasonable assumption 

185 given that calculated atmospheric stabilities show a neutrally stable atmosphere during most 

186 seasons and hours of the day. Potential errors in 10-m winds speeds when atmospheric stability 

187 deviates slightly from neutral conditions are expected to be small [19]. Buoys 46028 and 46011 

188 are located north of Point Conception, and buoy 46054 is located just to the south of Point 

189 Conception, at the western edge of the Santa Barbara Channel (red dots in Figure 1).

190

191 2.2.2 Satellite-based observations

192 We evaluated two scatterometers, which measure surface wind stress by sending 

193 microwave signals and then recording the backscattered signal in response to ocean roughness 

194 (e.g. [18]). Surface wind stress is converted to equivalent neutral winds 10 m above grounds based 

195 on the assumption of a nearly neutral atmosphere [18]. Vector wind fields are produced at 

196 approximately the same geographical location during ascending and descending passes of the 

197 satellite (i.e., twice per day). Here, we opted to use the swath data with 12.5 km spatial resolution 

198 because this high resolution product can contain small-scale features [20]. We downloaded both 

199 scatterometer-derived datasets from the NASA’s Jet Propulsion Laboratory Physical 

200 Oceanography Distributed Active Archive Center site (https://podaac.jpl.nasa.gov).

201 The first scatterometer dataset we evaluated was QuikSCAT, which measures the 

202 backscattered signal using the Ku-band frequency and passes through our study domain around 5 

203 and 18 h every day. QuikSCAT data were available from June 1999 to November 2009. This 

204 widely-used product has been validated for accuracy against in-situ buoy observations over various 

https://podaac.jpl.nasa.gov
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205 forcing regimes (e.g., [21]). We adopted the latest version of the Level 2 product (QuikSCAT 

206 Level 2B Version 3), which uses the improved geophysical model function and corrected rain 

207 contaminated wind speeds with a neural network approach [22]. 

208 The second scatterometer dataset we evaluated was ASCAT, which is a new-generation 

209 scatterometer launched in October 2006. It agrees well with QuikSCAT especially when wind 

210 speeds range between 3 m s-1 and 20 m s-1 [23]. ASCAT passes a local point around 9 and 20 h 

211 and uses the C-band frequency operation, which is less sensitive to rain contamination than the 

212 Ku-band frequency operation [24]. Because of its narrower swath width, ASCAT is limited to 

213 approximately 60% of the coverage of QuikSCAT during the same period [25]. The ASCAT Level 

214 2-Coastal product applies a boxcar filtering to yield more wind data close to the coast [26]. We 

215 used the Level 2 product’s Climate Data Record version, which was reprocessed using consistent 

216 calibration from January 2007 to March 2014. 

217 The last satellite-based product we assessed was the Cross-Calibrated Multi-Platform 

218 Version 2 (CCMP V2.0, a continuation of CCMP Version 1.1) [27]. We obtained this dataset from 

219 Remote Sensing Systems (http://www.remss.com/). This blended product combines satellite-

220 derived wind fields from microwave radiometers and scatterometers, with moored buoys and 

221 ERA-Interim model data using a Variational Analysis Method. It provides global and gap-free 

222 wind fields on a 0.25o grid four times per day from 1987 to the present. Previous studies in the 

223 southern Bay of Biscay [9] and the Iberian Peninsula coast [3, 8] demonstrated that CCMP 

224 accurately captured offshore winds.

225

226 2.2.3 Reanalysis datasets

http://www.remss.com/
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227 We also assessed two reanalysis products, which combine in-situ observations with 

228 numerical models: 1) Modern-Era Retrospective Analysis (MERRA, 

229 http://disc.sci.gsfc.nasa.gov/mdisc/), a global reanalysis product [28], and 2) North American 

230 Regional Reanalysis (NARR, https://www.esrl.noaa.gov/psd/), a regional reanalysis product [29]. 

231 MERRA is a commonly-used global reanalysis product for wind resource evaluations (e.g., [30]). 

232 It provides hourly data on a grid of 2/3o by 1/2o from 1979 to 2016. NARR outputs data every three 

233 hours (since 1979) and has a spatial resolution of 32 km. Both products yield wind data at various 

234 pressure levels above the surface. In part because it assimilates more observations into its model, 

235 NARR data yield more accurate results relative to global reanalysis products [29]. Previous studies 

236 in other regions have also shown good agreement between NARR and in-situ measurements near 

237 the surface and aloft (e.g., [31–33]).

238

239 2.2.4 Regional atmospheric model simulations

240 We analyzed simulated near-surface wind speeds from two regional model datasets. The 

241 first dataset covers the entire U.S. West Coast and was carried out using WRF model version 3.6 

242 [34,35], which is initialized and forced at boundaries with the Climate Forecast System Reanalysis. 

243 The model is configured with two nested grids, where the outer domain has a horizontal resolution 

244 of 18 km, and the inner domain has a resolution of 6 km. It is set up with a full set of 

245 parameterization schemes including the Mellor-Yamada-Nakanishi-Niino planetary boundary 

246 layer scheme [36], which is one of the best planetary boundary layer schemes to simulate realistic 

247 cloud cover and wind. More details can be found in Renault et al. [35]. Hourly 10-m wind fields 

248 above the ground level are available from 2004 to 2013 and used for this study. 

https://www.esrl.noaa.gov/psd/
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249 The second regional model dataset is from the WIND Toolkit 

250 (https://www.nrel.gov/grid/wind-toolkit.html), developed by the National Renewable Energy 

251 Laboratory (NREL) for the purpose of wind power application [30]. The results were generated 

252 by the WRF model version 3.4.1, which is initialized and forced at boundaries by the European 

253 Center for Medium-Range Weather Forecasts Interim Reanalysis. This model uses three nested 

254 grids with resolutions of 18 km, 6 km, and 2 km, respectively, with the inner 2 km grid covering 

255 the entire contiguous United States. The optimal model configuration is the best one from the eight 

256 model configurations tested by NREL. This configuration outputs simulations with small overall 

257 bias and in complex terrain, realistic hourly and diurnal wind variations, and highly resolved wind 

258 fields near the surface. More details can be found in Draxl et al. [30,37]. We analyzed hourly 10-

259 m wind fields (2007-2013). In addition to near-surface wind fields, wind data at higher altitudes 

260 up to 200 m are also available.

261  

262 2.3 Comparisons and Statistics

263 In order to compare the various datasets to the buoy observations, we obtained the closest 

264 point in space and time from each wind dataset relative to each of the three buoys. We included 

265 observations only if they met our collocation criteria with buoy data: measurements must have 

266 been recorded within 30 minutes of a buoy measurement and no more than 12.5-km from the buoy 

267 for all datasets except WIND Toolkit. We use a more restrictive spatial criterion of 2 km for WIND 

268 Toolkit because of its higher resolution of 2 km. Unlike gridded datasets, the closest swath point 

269 of the scatterometer data to a local buoy is not fixed and its measurement time is slightly different 

270 each day. In line with previous studies (e.g., [6]), we found no connection between the separation 

271 distance and the bias in QuikSCAT/ASCAT relative to a local buoy. Between 2000 and 2008 (time 



ACCEPTED MANUSCRIPT

13

272 period used for comparison in this study), the mean separation distance between the closest 

273 QuikSCAT point and buoy was 5.59, 4.45, and 4.93 km for buoy sites 46028, 46011, and 46054, 

274 respectively. Between 2007 and 2013, the mean separation distance between the closest ASCAT 

275 point and buoy was 4.91, 3.55, and 3.77 km. The distance between a local buoy and the closest 

276 point of a comparative gridded dataset is shown in Table 2. 

277 We evaluated the seven aforementioned wind datasets in relation to buoy measurements 

278 using the collocation criteria described above. To summarize the performance of each wind data, 

279 we utilized the statistical metrics of the bias and the root-mean-square-error (RMSE) between one 

280 dataset and buoy measurements. To illustrate the relationship between two variables, we fitted the 

281 paired data to a linear regression line and provided its intercept, its slope, and the coefficient of 

282 determination (R2) of the model fit in Tables 2, 3 and 4. 

283 Complete annual data were available for at least 7 years for all datasets (see Table 1 for 

284 details), thereby reducing the impact of interannual variability on our analysis. To display 

285 climatological characteristics of near-surface winds, we used buoy data from 1998-2016 and 

286 compared these winds between the buoys and other datasets for each year of overlap.

287

288 2.4 Tradeoff Analysis

289 In order to evaluate the relative merits of the datasets and identify the best dataset for 

290 offshore wind power applications, we applied a tradeoff analysis to our results. Tradeoff analysis 

291 is a useful graphical tool for comparing the relative performance of a set of options in relation to 

292 multiple objectives [38]. We considered five key objectives, or factors, in the tradeoff analysis of 

293 the seven wind datasets: temporal and spatial resolution (higher better), the absolute value of bias 
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294 and RMSE (lower better), and availability of wind speed data aloft (better). We then conducted 

295 visual inspection of pairwise tradeoff plots of the seven datasets in relation to the five factors in 

296 order to compare and contrast the relative merits of the datasets and identify the most appropriate 

297 one(s) for offshore wind power applications. 

298

299 3. Results

300 3.1. Buoy climatology

301 Climatological characteristics of buoy winds are shown in Figure 2. Each curve represents 

302 the composite day average wind speed for a particular month (i.e., average wind speed calculated 

303 using data over all years from a particular hour during each month). All times referenced are 

304 Pacific Standard Time (PST). 

305 FIGURE 2 LOCATION

306 The three different buoy sites display similar diurnal structure with daily minimums in the 

307 late morning and peaks in the early evening (Figure 2). There is also a slight seasonality in both 

308 the timing of the daily minimums and peaks, as well as the daily range. During months with 

309 stronger wind forcing (e.g., spring/summer upwelling months, cf. Walter et al. [15]), the daily 

310 peaks arrived slightly later compared to during other months. For example, at 46028, wind speed 

311 peaks around 20 h in May and at 18 h in January. Notably, the diurnal variability is comparable to 

312 that of the seasonal variability. There is also considerable buoy-to-buoy (i.e., spatial) variability at 

313 various time scales. Among the three sites, buoy 46054 displayed the strongest diurnal variations 

314 in wind speed with differences as large as 3 m s-1 between the daily minimum and maximum in 

315 some months. 
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316 Seasonal cycles also varied among buoys. The 10-m wind speeds at buoys 46028 and 

317 46011 reached their maxima in spring, whereas the 10-m wind speed at buoy 46054 reached its 

318 maximum in the summer (see Walter et al. [15] for a discussion of the seasonality at buoy 46011). 

319 This seasonal variation is closely connected to large-scale pressure systems, which fluctuate 

320 seasonally, but tend to produce equatorward winds near the surface along the coastline (see 

321 Fewings et al. [13] for a detailed description). Among the three sites, buoy 46054 had the strongest 

322 and most variable winds, which is strongly impacted by the interaction between the marine 

323 boundary layer and coastal capes (i.e., Point Conception) [13].

324

325 3.2 Paired comparisons with buoy measurements

326 Direct comparison between the wind speed calculated from each buoy at each site and each 

327 respective dataset were made using all data available over the selected time period for all points in 

328 each dataset that met collocation criteria. Figure 3 shows scatter plots and the linear regression line 

329 between each wind product’s wind speed and the buoy site’s wind speed. Statistics from the linear 

330 regression and collocation criteria are shown in Table 2. The error metrics (bias and RMSE) are 

331 displayed in Table 3. 

332 FIGURE 3 LOCATION

333 Based on the performance of the linear regression (Table 2, Figure 3) and the error metrics 

334 (Table 3), ASCAT had the lowest bias and RMSE, and the largest coefficient of regression with 

335 buoy-based site measurements, slightly outperforming the other scatterometer-based observation, 

336 QuikSCAT. This is not surprising, given previous validations of the product in other regions (e.g., 

337 [3]). We note, however, that the scatterometers (particularly ASCAT) have the smallest number of 
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338 points used for comparison with the buoy data because of the temporal resolution (typically only 

339 two measurements per day) and a shorter time period relative to other datasets. Following 

340 scatterometer-based observations, the WIND Toolkit showed the best correspondence with buoy 

341 data; this dataset even outperformed the scatterometers slightly with respect to bias at buoys 46011 

342 and 46054 and had relatively low error as well (Table 3). We note that the WIND Toolkit is also 

343 the most spatially (2 km) and temporally (1 hr) resolved dataset, and it contains wind data at 

344 various levels about the sea surface. While the WIND Toolkit, a version of the WRF regional 

345 model, displayed some of the best results, the other WRF model considered (denoted WRF here, 

346 a model developed for the West Coast of the United States) showed the worst correspondence to 

347 local buoys in this region. Given the sensitivity of the performance of the WRF model in wind 

348 simulation to various configurations and parameterizations, (e.g., [5]), it is possible that the better 

349 performance of the WIND Toolkit than its counterparts is associated with its configuration 

350 particularly optimized for simulating wind for wind energy applications. The largest error (RMSE) 

351 among the three sites is generally found at buoy 46054, which is located just south of Point 

352 Conception, highlighting the difficulty of resolving the wind field near complex land topography. 

353 Among these seven wind datasets, five (ASCAT, QuikSCAT, CCMP, NARR, and MERRA) 

354 display the worst correspondence at buoy 46054, while model simulations (WRF and WIND 

355 Toolkit) show relatively consistent correspondence across all buoys. The greater biases in the 

356 reanalysis datasets at buoy 46054 are likely due to their coarser spatial resolution, which is not 

357 able to accurately capture small-scale coastal orography near Point Conception and its impact on 

358 the velocity field.

359 To further investigate the differences between the various datasets and the local buoys, we 

360 examined the wind speed difference between a particular dataset and the local buoy as a function 
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361 of the buoy wind speed (Figure 4). In general, data products overestimated winds relative to the 

362 buoy at low wind speeds and underestimated at high wind speeds, with varying degrees of 

363 magnitude. This feature and negative relationship is consistent with the findings of previous 

364 studies using less than two years of data [3,6,7]. Statistics of the linear regression between wind 

365 speed difference and buoy wind speed are shown in Table 3. Both scatterometer-based 

366 observations (ASCAT and QuikSCAT) and WIND Toolkit exhibit smaller slopes among the three 

367 local buoys, indicating less functional dependence of the errors on wind speed relative to other 

368 datasets. We note that at the lowest and highest wind speeds, wind speed differences are less 

369 important for estimating wind power production due to turbine mechanical constraints that require 

370 cut-in and cut-out wind speed restrictions at low and high wind speeds, respectively.

371 FIGURE 4 LOCATION

372

373 3.3 Seasonal and diurnal bias

374 We examined the diurnal and seasonal dependence of bias and error (RMSE) as a function 

375 of both the time of day (i.e., diurnal signal) and month (i.e., seasonal signal) (bias: Figure 5; RMSE: 

376 Figure 6). To ensure that one dataset and reference buoy have the same sample size, we used paired 

377 data for the comparison analysis from Section 3.2. Here, a positive (negative) bias indicates that 

378 the respective dataset overestimates (underestimates) the buoy wind speed.

379 FIGURE 5 LOCATION

380 FIGURE 6 LOCATION
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381 Overall, QuikSCAT and ASCAT show some of the smallest biases among the datasets, 

382 although there are only two hours per day for comparison. Generally, both datasets show different 

383 performance between the early morning and evening. While the bias is consistently low at 46028, 

384 the bias at 46011 is more positive in the mornings, whereas the bias at 46054 is negative in the 

385 evenings. The other satellite-based product, CCMP, is more temporally resolved (6 hour 

386 resolution), but shows much higher bias. Similar to QuikSCAT and ASCAT, CCMP tends to 

387 overestimate buoy-measured wind speeds near 46011. In contrast to 46011, CCMP underestimates 

388 wind speeds near 46028 and 46054.  

389 The reanalysis product NARR exhibits consistently low biases at 46028 and 46011, yet 

390 strongly underestimates wind speed (i.e., negative bias) at 46054. Such low and homogeneous 

391 biases at the two northernmost buoy sites (46028 and 46011) are not seen in the other reanalysis 

392 product, MERRA, which displays weaker wind speeds compared to buoy measurements (i.e., 

393 negative bias) in the morning. The weaker winds in the morning, along with no difference (46028) 

394 or relatively higher wind speeds (46011) in the evening, particularly from May to September, lead 

395 to stronger predicted diurnal cycles than observed at the buoys.

396 Both atmospheric regional model simulations used in this study display lower biases at 

397 46054, compared to other datasets. At 46028 and 46011, WRF overestimates wind speed 

398 throughout the day in summer months. For the WIND Toolkit, wind speed is underestimated (i.e., 

399 negative bias) close to buoy measurements at 46028. It tends to overestimate wind speed (i.e., 

400 positive bias) from 00:00 to 12:00 PST at 46011 in contrast to slight underestimates in the evening.

401 Overall, QuikSCAT, ASCAT, and WIND Toolkit are the best performing datasets with the 

402 lowest bias, and hence smallest discrepancies from local buoys. The bias appears to be tied to the 

403 RMSE in which the greater bias corresponds to the greater RMSE. Since the diurnal and seasonal 
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404 patterns in bias (RMSE) are different across the three buoys, a simple correction of the underlying 

405 dataset is likely to lead to more uncertainties spatially.

406

407 3.4 Tradeoff analysis for seven datasets

408 Although scatterometer-based observations were the best performing datasets relative to 

409 buoy measurements in this study domain, their temporal resolution is too coarse to fully resolve 

410 the diurnal cycle of near-surface winds. By contrast, the next performing dataset, WIND Toolkit, 

411 provides hourly wind fields with much higher spatial resolution. To evaluate the relative merits of 

412 the datasets and identify the best dataset for offshore wind power applications, we conducted 

413 tradeoff analysis to illustrate important differences in the characteristics of the seven datasets in 

414 relation to five factors: the absolute value of bias, RMSE, data availability aloft, temporal 

415 resolution, and spatial resolution. Here, we considered the overall performance (the absolute value 

416 of bias and RMSE) at the three local buoy sites in this domain (Table 3), but the performance at 

417 individual sites can be obtained in a similar fashion. 

418 Figure 7a shows the mean bias and RMSE over the three buoy sites along with error bars 

419 representing one standard deviation from the mean. ASCAT, QuickScat, and WIND Toolkit all 

420 have similarly low levels of bias and RMSE, consistently at the three buoy sites; however, among 

421 these datasets, only WIND Toolkit contains data aloft (Figure 7a). Furthermore, WIND Toolkit 

422 contains a far superior spatial and temporal resolution, compared with ASCAT and QuickScat 

423 (Figure 7b). Only WRF contains spatial and temporal resolution comparable with that by the 

424 WIND Toolkit, but WRF is otherwise inferior because it has a much larger RMSE. Collectively, 
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425 these tradeoff analysis results indicate that WIND Toolkit is the most appropriate dataset for 

426 supporting offshore wind power applications in this region.

427 FIGURE 7 LOCATION

428

429 3.5 Spatial and temporal variations of wind speed over a wide area

430 Based on the point-to-point comparison and the tradeoff analysis, the WIND Toolkit 

431 appears to be the best dataset for offshore wind power applications and can better estimate wind 

432 speeds daily and seasonally over a wide area. Figure 8 displays the average 10-m wind speeds at 

433 different hours and over four seasons from 2007-2013 using WIND Toolkit. Similar to the three 

434 buoy sites, other areas across the central California region are characterized by strong diurnal 

435 (weaker in the morning and stronger in the evening) and seasonal (stronger in spring and weaker 

436 in fall) variability in the wind speed. The diurnal cycle is enhanced during spring and summer 

437 months, relative to fall and winter months, consistent with data from the three buoy sites shown in 

438 Figure 2. Figure 8 also highlights the local maxima of wind speed near the complex topography of 

439 Point Conception. 

440 FIGURE 8 LOCATION

441

442 3.5 Characteristics of wind direction

443 We also assessed the climatology of near-surface wind direction at the local buoys and in 

444 comparison with the other wind datasets. We present wind direction in terms of where the wind is 

445 coming from in degrees clockwise from true north (i.e., 0° wind direction indicates a wind coming 
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446 from the north and blowing to the south). To account for the direction difference due to the 

447 discontinuity between 0° and 360°, and to quantify the direction difference between -180° and 180°, 

448 the wind direction from the respective data set (θO) relative to the buoy data (θB) was modified 

449 following Pensieri et al. [16]. First, we computed the wind direction difference (θO – θB). When θO 

450 – θB > 180°, θO = θO - 360° and when θO – θB < -180°, θO = θO + 360°. With the modified θO, the 

451 wind speed difference was calculated as θO – θB.

452 Based on the time period of 1998-2016, winds measured at the three buoys are 

453 predominately northwesterly (i.e., along-shore equatorward) (see wind rose histograms in Figure 

454 9). Persistent, but variable in magnitude, northwesterly winds are closely linked to large-scale 

455 pressure systems and the interaction between air flows and topography along the coast (e.g., [13]). 

456 At the site 46054, near-surface winds have more westerly components than the other two sites, 

457 resulting from steering by the adjacent coastline that is oriented in the E-W direction near the Santa 

458 Barbara Channel. Examination of the diurnal cycle shows a more northerly component in the early 

459 morning, followed by a more westerly component in the afternoon (not shown), consistent with 

460 local sea breezes along the Central Coast (e.g., [39]).

461 FIGURE 9 LOCATION

462 The error metrics (bias and RMSE) of wind direction from paired data are shown in Table 

463 4. Most of the datasets reveal a positive (i.e., clockwise) bias, with the exception of ASCAT at 

464 46011 and 46054 and NARR at 46054. Similar to the wind speed analysis, the two scatterometers 

465 (QuikSCAT and ASCAT) and WIND Toolkit display the best overall performance in terms of bias 

466 and RMSE for wind direction. QuikSCAT has the lowest bias in wind direction at 46011 and 

467 46054. ASCAT has the lowest bias in wind direction and the second lowest RMSE at 46028. 

468 WIND Toolkit has the second lowest bias and the lowest RMSE at all three sites.
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469

470 4. Discussion and Conclusion

471 This study provides a comprehensive evaluation of near-surface wind datasets along the central 

472 region of the California coast, ranging from south of Monterey Bay to north of Point Conception. 

473 This particular region has received considerable interest in the development of offshore wind farms 

474 due to its strong, steady winds and existing connections to the state’s electrical grid. This study 

475 provides the first known assessment of various wind datasets in this region over both seasonal and 

476 diurnal time scales, both of which are critical for accurate assessment of offshore wind power 

477 production but are seldom considered at the same time by previous studies. In addition, this study 

478 provides a framework by which to assess spatiotemporal variations among various datasets for a 

479 particular region, including comparison of error metrics over both seasonal and diurnal time scales 

480 and tradeoff analysis. This framework can be applied to other regions – using the five factors we 

481 focused on and possibly others of importance – where accurate estimates of wind speed are needed 

482 to evaluate wind energy potential as well as other needs.

483 We examined near-surface wind fields from seven datasets, including satellite 

484 observations, reanalysis products, and regional model output. For each dataset considered, we 

485 found no common pattern of bias and RMSE at all local buoy sites on certain hours of the day or 

486 months of the year. Overall, the two scatterometers, QuikSCAT and ASCAT, showed the best 

487 performance relative to the in-situ buoy measurements. However, the coarse temporal resolution 

488 (i.e., two measurements per day) and spatial resolution (12.5 km) of these datasets limits their 

489 applicability for offshore wind power assessment, particularly since this region experiences strong 

490 diurnal wind forcing and strong spatial gradients in the wind field. On the other hand, WIND 

491 Toolkit was one of the most highly resolved datasets (1 hr temporal and 2 km spatial resolution), 
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492 and performed nearly as well as the scatterometers in the various error metrics we assessed. 

493 Moreover, the WIND Toolkit has wind data available above the surface and at potential turbine 

494 hub heights, which could obviate interpolation and extrapolation techniques needed with other 

495 data products [3]. Site-specific assessments should consider tradeoffs between spatiotemporal 

496 resolution of the underlying dataset, error metrics relative to local buoy measurements, and the 

497 availability of data at hub height when assessing various data products for offshore wind energy 

498 assessments and power calculations. With consideration of these factors, the WIND Toolkit 

499 appears to the best dataset for the central California region. Due to the lack of wind observations 

500 at altitudes greater than 5 or 10 m in this region, it is challenging to evaluate offshore wind power 

501 potential at hub height (i.e., heights of at least 100 m above the sea surface based on current 

502 technologies), which is a critical factor considered for future offshore wind siting and 

503 development. Since the surface wind distribution can provide the implications for wind distribution 

504 at hub height, future work will focus on the calculation of wind power generation at hub height 

505 from the WIND Toolkit under different scenarios both spatially and temporally.

506 Finally, tradeoff analysis is a useful graphical tool for comparing the relative performance 

507 of a set of options in relation to multiple objectives. Grounded in Portfolio Theory (maximize 

508 return, minimize risk of financial investments; [40]), we applied tradeoff analysis to factors 

509 important to offshore wind power applications. This analysis revealed the overall superior value 

510 of WIND Toolkit (in relation to the prescribed factors), and more generally demonstrated a 

511 framework that could be used for evaluating wind datasets in other regions. Furthermore, the 

512 tradeoff analysis framework is adaptable, allowing for integration of additional factors important 

513 to offshore wind power applications, including potential impacts of wind energy development on 

514 the marine ecosystem [41, 42]. In such cases the tradeoff analysis axes can be expanded to include 
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515 these factors, and relative weights can be applied to the factors, in order to help identify 

516 development options that most effectively represent the socio-economic priorities in the system 

517 [43]. 

518
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670

671

Dataset Type of dataset Spatial 

resolution

Temporal 

resolution

Time used in 

this study

QuikSCAT Satellite 

(Swath)

12.5km 2 times per day 2000-2008

ASCAT Satellite 

(Swath)

12.5km 2 times per day 2007-2013

CCMP V2 Satellites and 

analyses

0.25olat/lon 4 times per day 2004-2013

NARR Regional 

reanalysis

32 km 8 times per day 2004-2013

MERRA Global 

reanalysis

1/2olat-2/3olon Hourly 2004-2013

http://www.maritimejournal.com/news101/marine-renewable-energy/words-first-floating-offshore-wind-farm-now-open
http://www.maritimejournal.com/news101/marine-renewable-energy/words-first-floating-offshore-wind-farm-now-open
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WRF Regional model 6 km Hourly 2004-2013

WIND Toolkit Regional model 2 km Hourly 2007-2013

672

673 Table 1: Characteristics of wind datasets considered for comparison with buoy observations.

674

675

Buoy Dataset Slope Intercept R2 Distance 

from buoy 

(km)

Number 

of valid 

pairs

QuikSCAT 0.90 1.01 0.92 5.59 5654

ASCAT 0.94 0.25 0.94 4.91 2153

CCMP V2 0.68 1.37 0.77 9.80 13013

NARR 0.76 1.59 0.75 9.07 26018

MERRA 0.59 1.69 0.74 26.85 78014

WRF 0.38 4.88 0.15 3.64 78012

46028

WIND 0.79 1.13 0.83 0.62 55957
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QuikSCAT 0.85 1.56 0.84 4.45 5449

ASCAT 0.89 1.02 0.84 3.55 2241

CCMP V2 0.75 2.00 0.67 13.22 12368

NARR 0.72 1.40 0.69 7.62 24695

MERRA 0.62 2.04 0.64 29.07 74049

WRF 0.39 4.77 0.14 3.24 74046

46011

 

 

 

 

 

WIND 0.77 1.65 0.73 0.89 51953

QuikSCAT 0.68 2.23 0.82 4.93 3875

ASCAT 0.81 1.16 0.88 3.77 1670

CCMP V2 0.53 1.66 0.62 15.41 7928

NARR 0.49 1.13 0.53 7.62 15754

MERRA 0.40 1.76 0.58 31.41 47392

WRF 0.37 4.91 0.16 2.10 47385

46054

 

 

 

 

 

WIND 0.80 1.45 0.79 0.99 34001
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676

677 Table 2: Statistical metrics from the linear regression between buoy data and each of the 

678 comparison datasets.

679

680

Buoy Dataset Bias RMSE Slope Intercept R2

QuikSCAT 0.26 1.22 -0.10 1.01 0.12

ASCAT -0.18 1.03 -0.06 0.25 0.06

CCMP V2 -0.94 2.20 -0.32 1.37 0.42

NARR -0.15 2.03 -0.24 1.59 0.23

MERRA -1.28 2.54 -0.41 1.69 0.58

WRF 0.41 4.47 -0.62 4.88 0.32

46028

 

 

 

 

 

WIND -0.43 1.76 -0.21 1.13 0.26

QuikSCAT 0.67 1.50 -0.15 1.56 0.14

ASCAT 0.38 1.40 -0.11 1.02 0.08

CCMP V2 0.52 2.02 -0.25 2.00 0.19

46011

 

 

 

 NARR -0.29 1.90 -0.28 1.40 0.26
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MERRA -0.21 2.04 -0.38 2.04 0.40

WRF 1.17 4.07 -0.61 4.77 0.28

 

WIND 0.28 1.82 -0.23 1.65 0.18

QuikSCAT -0.49 2.03 -0.32 2.23 0.50

ASCAT -0.33 1.47 -0.19 1.16 0.31

CCMP V2 -1.99 3.29 -0.47 1.66 0.57

NARR -2.78 4.00 -0.51 1.13 0.55

MERRA -2.87 4.08 -0.60 1.76 0.75

WRF 0.04 4.43 -0.63 4.91 0.36

46054

 

 

 

 

 

WIND -0.07 1.90 -0.20 1.45 0.19

681

682 Table 3: Statistics from the comparison between the buoy data and comparison datasets, including 

683 error metrics (bias and RMSE), as well as outputs (slope, intercept, coefficient of determination) 

684 from the linear regression between the wind speed difference and the buoy wind speed.  

685

Buoy Dataset Bias RMSE

46028

 

QuikSCAT 6.74 38.74
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ASCAT 1.49 37.36

CCMP V2 6.51 41.86

NARR 3.77 40.85

MERRA 5.95 41.98

WRF 7.10 68.88

 

 

 

 

WIND 3.84 36.76

QuikSCAT 0.44 45.83

ASCAT -3.09 47.30

CCMP V2 2.02 44.47

NARR 0.26 41.96

MERRA 0.28 44.49

WRF 14.50 68.05

46011

 

 

 

 

 

WIND 0.99 39.97

QuikSCAT 1.39 46.85

ASCAT -3.86 46.73

CCMP V2 7.78 42.85

46054

 

 

 

 NARR -8.32 45.03
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MERRA 11.12 45.30

WRF 14.18 69.37

 

WIND 2.70 38.65

686

687 Table 4: Statistical metrics of wind direction (o) from paired data. A positive bias indicates a 

688 clockwise bias. 

689

690

691

692
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693

694 Figure 1: Bathymetry of the Central California Coast highlighting the locations of buoy platforms 

695 (red circles, representing buoys 46028, 46011, 46054 from north to south), existing state electrical 

696 grid connections (red diamonds), National Marine Sanctuaries (dashed blue lines; Monterey Bay 

697 Sanctuary to the north and Channel Islands Sanctuary to the south), and the 1000 m isobath (solid 

698 black line). The state electrical grid connections from north to south are the Morro Bay power 

699 plant, Diablo Canyon nuclear power plant, and Vandenberg Air Force Base. 

700

701

702

703
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704

705 Figure 2: Composite day average buoy wind speed for a particular month (colors) using data 

706 calculated over all years (1998-2016) for each buoy (46028, 46011, and 46054 from left to right). 

707
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708

709 Figure 3: Comparisons of wind speed between the buoy measurements and each respective dataset 

710 (all in m s -1). The value on each subplot shows the coefficient of determination (R2) from a linear 

711 regression model (fit shown as bold black line). The one-to-one line is also shown for reference 

712 (thin gray line). Wind speed is binned by 1 m s -1 along both of the x-axis and y-axis, and then 

713 divided by the total number of data pairs to yield the frequency of data points in a particular bin 

714 (colors). The rows from the top to the bottom are QuikSCAT (QS), ASCAT, CCMP V2.0 (CCMP), 

715 NARR, MERRA, WRF, and WIND Toolkit (WTK). The columns from the left to the right 

716 represent the local buoy 46028, 46011, and 46054, respectively. Note that the time period used for 

717 analysis depends on data availability. 
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718

719 Figure 4: Differences in wind speed between the buoy and the other respective datasets as a 

720 function of the buoy wind speed (all in m s-1). The value on each subplot shows the coefficient of 

721 determination (R2) from a linear regression model (black line). Wind speed is binned by 1 m s-1 

722 along both of the x-axis and the y-axis, and then divided by the total number of data pairs to yield 

723 the frequency of data points in a particular bin (colors). The rows from the top to the bottom are 

724 QuikSCAT (QS), ASCAT, CCMP V2.0 (CCMP), NARR, MERRA, WRF, and WIND Toolkit 

725 (WTK). The columns from the left to the right represent the local buoy 46028, 46011, and 46054, 

726 respectively. Note that the time period used for analysis depends on data availability.
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727

728 Figure 5: Bias (m s-1) in the hourly near-surface wind speed in each month for all available paired 

729 data in relation to the buoy measurements at 46028 (left), 46011 (middle), and 46054 (right). A 

730 positive (negative) bias indicates that the respective dataset overestimates (underestimates) the 

731 buoy wind speed. The white color indicates zero bias. The rows from the top to the bottom are 

732 QuikSCAT (QS), ASCAT, CCMP V2.0 (CCMP), NARR, MERRA, WRF, and WIND Toolkit 

733 (WTK). The following hours (in PST) are shown for the respective dataset: QS (05 and 18); 

734 ASCAT (9 and 20); CCMP (04, 10, 16, and 22); NARR (01, 04, 07, 10, 13, 16, 19, and 22); and 

735 for MERRA, WRF, and WTF (hourly from 00 to 23). See Table 1 for the time period used for 

736 analysis of individual datasets.
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737

738

739 Figure 6: Similar to Figure 5, but for root-mean-squared error in the hourly near-surface wind 

740 speed in each month (m s-1).

741

742

743
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744

745

746 Figure 7: Pairwise tradeoffs in relation to different factors for seven datasets. Blue color represents 

747 the data availability aloft, while red color represents no data available aloft. (a) The absolute value 

748 of the bias and RMSE. The markers represent the mean and the error bars represent one standard 

749 deviation from the mean. (b) The temporal and spatial resolution. QS and ASCAT have the same 

750 temporal and spatial resolution so they are overlapping in the panel (b). For the MERRA data, we 

751 show the spatial resolution in the latitudinal direction (see Table 1).

752
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753

754 Figure 8: Averages of the hourly 10-m wind speed from WIND Toolkit over 2007-2013 at different 

755 hours and four seasons. Each column from the left to the right represents winter (December-

756 January-February, DJF), spring (March-April-May, MAM), summer (June-July-August, JJA), and 

757 fall (September-October-November, SON). Each row from the top to the bottom represents 00 

758 PST, 04 PST, 08 PST, 12 PST, 16 PST, and 20 PST.

759

760

761
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762

763

764

765

766

767 Figure 9: Wind rose histograms using data from 1998-2016 for the three buoys considered in this 

768 study (46028, 46011, and 46054 from left to right, respectively). The direction shown is the 

769 direction from which the wind is coming from in degrees clockwise from true north (i.e., 0° wind 

770 direction indicates a wind coming from the north and blowing to the south).


