期刊论文详细信息
RENEWABLE ENERGY 卷:153
A systematic analysis of meteorological variables for PV output power estimation
Article
AlSkaif, Tarek1  Dev, Soumyabrata2,3  Visser, Lennard1  Hossari, Murhaf2  van Sark, Wilfried1 
[1] Univ Utrecht, Copernicus Inst Sustainable Dev, Utrecht, Netherlands
[2] ADAPT SFI Res Ctr, Dublin, Ireland
[3] Univ Coll Dublin, Sch Comp Sci, Dublin, Ireland
关键词: Photovoltaic;    Solar power estimation;    Meteorological variables;    Machine learning;    Regression methods;   
DOI  :  10.1016/j.renene.2020.01.150
来源: Elsevier
PDF
【 摘 要 】

While the large-scale deployment of photovoltaics (PV) for generating electricity plays an important role to mitigate global warming, the variability of PV output power poses challenges in grid management. Typically, the PV output power is dependent on various meteorological variables at the PV site. In this paper, we present a systematic approach to perform an analysis on different meteorological variables, namely temperature, dew point temperature, relative humidity, visibility, air pressure, wind speed, cloud cover, wind bearing and precipitation, and assess their impact on PV output power estimation. The study uses three years of input meteorological data and PV output power data from multiple prosumers in two case studies, one in the U.S. and one in the Netherlands. The analysis covers the correlation and interdependence among the meteorological variables. Then, by using machine learning-based regression methods, we identify the primary meteorological variables for PV output power estimation. Finally, the paper concludes that the impact of using a lower-dimensional subspace of meteorological variables per location, as input for the regression methods, results in a similar estimation accuracy in the two case studies. (C) 2020 The Authors. Published by Elsevier Ltd.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_renene_2020_01_150.pdf 1353KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:2次