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ABSTRACT

While the large-scale deployment of photovoltaics (PV) for generating electricity plays an important role
to mitigate global warming, the variability of PV output power poses challenges in grid management.
Typically, the PV output power is dependent on various meteorological variables at the PV site. In this
paper, we present a systematic approach to perform an analysis on different meteorological variables,
namely temperature, dew point temperature, relative humidity, visibility, air pressure, wind speed, cloud
cover, wind bearing and precipitation, and assess their impact on PV output power estimation. The study
uses three years of input meteorological data and PV output power data from multiple prosumers in two
case studies, one in the U.S. and one in the Netherlands. The analysis covers the correlation and inter-
dependence among the meteorological variables. Then, by using machine learning-based regression
methods, we identify the primary meteorological variables for PV output power estimation. Finally, the
paper concludes that the impact of using a lower-dimensional subspace of meteorological variables per
location, as input for the regression methods, results in a similar estimation accuracy in the two case

studies.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Due to the global concerns about climate change, renewable
energy technologies are entering the energy production landscape
rapidly. In recent years, there has been a sharp increase in the
deployment of photovoltaic (PV) systems as a source of power
generation in both standalone and grid-connected residential and
large-scale systems [1]. It is expected that the cumulative installed
capacity of PV could reach 22% of global electricity generation in
2050 [2]. This level of PV will support the transition into a more
sustainable energy system and deliver substantial benefits in terms
of security of energy supply and socio-economic development [3].

The output power of PV systems depends mostly on the global
irradiance arriving on the plane of the PV array (POA). The
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variability associated to the PV output power is caused by fluctu-
ations in POA irradiation and can be divided into a deterministic
and a stochastic component. The deterministic part is explained by
the movement between the Sun and Earth, and follows a diurnal
cycle. More significant and unexpected fluctuations in PV output
power are caused by the stochastic behavior of the atmosphere.
This uncertainty is due to multiple meteorological variables, such as
temperature, humidity level, visibility, air pressure, wind speed and
cloud cover [4,5].

The variable output power results in voltage and frequency
fluctuations, which poses challenges on grid operation especially at
high PV penetration rates. In order to cope with the power vari-
ability and maintain reliable grid operation, large amounts of costly
storage facilities, balancing energy and/or frequency reserves are
required [6,7]. Accurate PV output power forecasts have the po-
tential to lower reserve capacity and maintain reliable grid opera-
tion as power production and consumption can be scheduled
accordingly. This can potentially decrease the integration costs
associated with high PV penetration. As a result, the field of PV
output power estimation and forecasting has received increasing
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attention among researchers over the past decade. Moreover,
thanks to the availability of reliable, high resolution and real-time
measurement and processing units, significant improvements
have been made in the field of solar power estimation and fore-
casting [4,5,8,9].

PV output power is either estimated directly or indirectly. In-
direct techniques measure or predict the global horizontal irra-
diation (GHI) and then calculate the PV output power by means of
a physical conversion model. Direct methods estimate or forecast
the PV output power directly from meteorological variables and/
or historical PV power measurements. Different methods of PV
power forecasting can be generally divided into four classes, i.e.
machine learning (ML), cloud imagery, physical and hybrid
methods [4,5,10]. ML-based methods cover both statistical and
computational intelligence methods. Cloud imagery methods
consider either satellite images or all-sky imaging that in principal
estimate GHI by determining cloud cover indices and cloud mo-
tion vectors. Physical methods include numerical weather pre-
diction (NWP) models that predict irradiation by describing the
development of the atmospheric state in time. Finally, hybrid
models try to capture the strengths of different methods by
combining two or more models [10,11]. The choice for forecasting
methods highly depends on the desired forecasting horizon and
spatial resolution.

Forecasting methods integrate various meteorological variables
as exogenous input in order to achieve more accurate forecasts
since these variables are considered as a source of uncertainty in PV
output power [4,5,12]. PV output power forecasting using exoge-
nous data has been addressed using different methods of forecast in
Refs. [8,13,14]. The work in Ref. [13] uses a forecasting model based
on satellite images and a support vector machines (SVM) learning
scheme. A PV output power forecasting in a network of neighboring
PV systems is proposed in Ref. [8]. The work is based on the cross-
correlation time lag between clear-sky index of those PV systems
that are influenced by the same cloud. In Ref. [15], an ANN fore-
casting method is proposed based on weather classifications
considering the meteorological variables relative humidity, wind
speed and air temperature in addition to solar irradiation. Another
ML-based PV power forecasting approach [16] takes the meteoro-
logical variables temperature, cloud cover, wind speed, wind di-
rection, relative humidity, air pressure and visibility into
consideration. The work in Ref. [17] present a forecasting approach
that is merely based on cloud cover data and PV power measure-
ments. In Refs. [5,9,18], various other recently proposed exogenous
forecasting methods can be found that consider one or several
meteorological variables as input data. A particular exogenous
model is presented in Ref. [19]. The proposed method trains a
submodel for different types of daily weather classifications, i.e. a
sunny day. Next, depending on the forecasted weather classifica-
tion a certain submodel is called.

Despite their relevance, most of the exogenous forecasting
methods of PV output power consider only few and different
meteorological variables as data input. Besides, these studies focus
mainly on the forecasting models and their final performance.
Subsequently, in literature less attention is paid to the interde-
pendence between different meteorological variables and their
individual importance in the results of different methods of esti-
mation and forecasting. An analysis of multiple meteorological
variables was proposed in Ref. [20], but for the purpose of rainfall
detection.

This paper aims to contribute to this research area and presents
a systematic analysis of different meteorological variables that
affect PV output power estimation. Based on two sets of 3 year-long
data holding several meteorological values and PV output power
measurements, we point out the variables that are most significant

to consider when estimating the PV output power (i.e., resulting in
a lower-dimensional subspace of input meteorological variables),
while we explicitly exclude solar irradiance as we are interested in
how other meteorological variables that are less obvious affect PV
output power. The PV output power estimation performance is
then evaluated using different well-established ML-based regres-
sion methods and considering different sets of input variables. To
increase the reliability of the results and capture potential de-
viations, the analysis and assessment of the estimation perfor-
mance are performed using data sets in two regions with different
climates, namely Austin, Texas, the US. and Utrecht, the
Netherlands. These data sets are used to analyze the interdepen-
dence of different meteorological variables, the importance of the
variables when estimating the PV output power, and the impact of
the climate on the results.

Our study provides new insights on the interdependence and
importance of a wide set of meteorological variables for PV output
power estimation, and present a comprehensive comparison be-
tween various ML-based regression methods in terms of estimation
errors. The methodology presented provide guidance in selecting
the most important weather variables for estimating or forecasting
PV output power at any location. In addition, the analysis gives
explanations on why the estimation performance of some models
deviate in different regions even when using the same input
meteorological variables.

The structure of the paper is organized as follows.” Section 2
provides a description of the system and input data used in this
study and shows how the relation between meteorological vari-
ables deviate per climate. The ML-based regression and variables
importance methods are described in Section 3. In Section 4, we
evaluate the estimation performance and analyze the impact of
different meteorological variables on PV output power estimation.
Finally, we conclude the paper and provide pointers for future work
in Section 5.

2. System and data description
2.1. Input data sets

This study considers two case studies, namely Austin, Texas, the
U.S and Utrecht, the Netherlands. For each location an input data set
of meteorological variables (i.e., 3 year-long) is collected from
nearby weather stations. Both data sets comprise a wide set of
meteorological variables, namely ambient temperature (T), dew
point temperature (DP), humidity level (RH), visibility (V), air
pressure (P), wind speed (WS), cloud cover (CC), wind bearing (WB)
and precipitation (R). Most of these meteorological variables are
self-explanatory. Amongst them, WB is the direction of the flow of
winds, measured in degrees. The cloud cover records in the two
case studies are provided in oktas. Despite the fact that solar irra-
diance has a high correlation with the PV output power, this vari-
able is not considered as an input in the analysis because our aim is
to assess how other variables, with less obvious relationship, affect
PV output power estimation. Moreover, this variable is available
only for the Utrecht case study and not for Austin. Because of the
strong relation between the diurnal solar cycle and the PV output
power and the deterministic nature of this variable [5], the hour of
the day (HoD) is considered as an additional input variable. Since
the HoD has a cyclic nature, this variable consists of a x and y
component that reflect the sine and cosine components of the HoD:

2 The source code of all simulations in this paper will be provided as supporting
information.
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Another two data sets consisting of PV output power mea-
surements (i.e., 3 year-long) are collected from multiple sites (i.e.,
households) in Austin and Utrecht. We performed an extensive
quality assessment regarding the completeness of the data sets of
each PV system. Further, any output power measurement at certain
timestamps that was determined to be impossible has been
removed (e.g., an hourly average production above the installed
capacity or a negative production value during times of daylight).
Next, more elaboration on the considered case studies is provided
in Section 2.2.

2.2. Case studies

The data used in the first case study is collected from the Pecan
Street Dataport [21], as part of the Pecan Street Demonstration, a
smart grid research project located in Austin, Texas, US [22,23].
From the Dataport, we use 3 years of PV output power data from
January 2014 until December 2016 of 24 households with rooftop
PV systems (i.e., prosumers). This data is available in the Pecan
Street Dataport in an hourly resolution. The installed capacity of
these PV systems vary between 2.9 and 8.8 kWp and all PV panels
are orientated to the south. We use the meteorological variables
data (i.e., available in the same Dataport) for the same location and
with the same data resolution as the PV data. The households are
located in Austin, Texas, US, with coordinates 30.2672° N, 97.7431°
W. According to the Koppen-Geiger climate classification, Austin
has a humid-subtropical climate (i.e., Cfa) [24].

In the second case study, 3 years of hourly meteorological var-
iables data from February 2014 until January 2017 are used to
generate the results. The data are measured by a weather station at
De Bilt, Utrecht, the Netherlands with coordinates 52.0907° N,
5.1214° E. This weather station belongs to the Royal Netherlands
Meteorological Institute (KNMI) and the data is made available
online via their website [25]. Measurements of rooftop PV output
power of 10 households located near the weather station are used.
These measurements are available in 1-min resolution and aver-
aged for every hour of the assessment period in order to provide a
fair comparison with the other case study. The size and orientation
of these PV systems respectively ranges from 0.5 to 3.0 kWp and
175—185° (i.e., south orientated). For more information about the
rooftop PV systems, please refer to Refs. [8,12]. Other than Austin,
the climate in Utrecht is classified as Oceanic (i.e., Cfb) [24].

In both case studies the PV output power is measured directly,
meaning that it represents the PV modules’ generation. Those data
sets are used as input to the regression methods in order to
determine the most important meteorological variables. More-
over, nocturnal timestamps have been removed from all data sets
(i.e., when PV output power is 0), such that these night-time
values are not considered in training nor evaluation. In both
case studies, the first two years of data are used for training, the
third year is used to test and compare the performance of the
methods. Since the size of the PV systems vary per site, the output
power of each system is normalized according to the installed
capacity before the regression methods are trained. Consequently,
all values and errors are independent of the system size and can be
compared directly.

In order to show how the relation between meteorological
variables deviate per climate, in the next sections we assess their

interdependence and perform a principle component analysis
(PCA).

2.3. Interdependence of meteorological variables

This section analyses the interdependence of n =9 meteoro-
logical variables in each site, using the 3 years of meteorological
data described in Section 2.1, and highlights how this is different in
the two case studies. We consider different vectors of meteoro-
logical variables which are indicated by vq,v>,...,v,, where n is the
number of considered meteorological variables. Each vector is of
length m which indicates the weather recordings for all timestamps
in the assessment period. If we stack all the column vectors, we get
the variable matrix X, of dimension m x n, as:

X=1[Vy,Vq, ..., Vn). (3)

The cross-correlation value among the various meteorological
variables is computed by calculating the correlation coefficients of
the variable matrix X. The correlation coefficient between a pair of
meteorological variables vectors indicates the degree of correlation
between them (i.e., a measure of their linear dependence) [26].

The resulted interdependence of the considered meteorolog-
ical variables in the 3 year period is illustrated in Fig. 1. The off-
diagonal elements show the degree of dependency for each pair
of variables. It can be observed from the figure that in the two
considered case studies, the temperature (T) has a strong positive
correlation with the dew point temperature (DP) indicating that
when T increases, the DP also increases (i.e., the correlation of T
(x-axis in Fig. 1) with DP (y-axis) is 0.81 in Austin and 0.87 in
Utrecht). The visibility (V) has a strong negative correlation with
the relative humidity (RH) (i.e., —0.48 in Austin and —0.67 in
Utrecht) indicating that when the horizontal view during obser-
vation is high, the RH is low, and vice versa. Furthermore, V is
positively correlated with T (e.g., during sunny days in spring and
summer seasons) and somehow with wind speed (WS) (i.e., when
WS is high, V is usually high). However, Fig. 1 (a) and (b) show that
this positive correlation is significantly higher for Utrecht than
Austin (e.g., correlation of T with V is 0.21 in Austin and 0.41 in
Utrecht). Similarly, cloud cover (CC) has a positive correlation with
RH (i.e., indicating that in an overcast condition, the RH has a high
value). This correlation is higher, however, in Austin (0.5) than in
Utrecht (0.21). In the Netherlands, it is likely that the humidity is
high when it is cloudy but this can also happen during less cloudy
days due to the relative large inland water surface area (i.e., a fifth
of the total surface area consists of water in the Netherlands).
Moreover, the RH is found to be more stable in Utrecht throughout
the year including the summer when compared to Austin. In
addition, RH is in both locations negatively correlated with tem-
perature (i.e., as T increases, RH drops).

Besides the overlapping correlation of several meteorological
variables in both locations, some (anti-) correlations are only found
at a single location. In Austin, V and CC are negatively correlated. In
addition, both T and DP are strongly negatively correlated with air
pressure (P). This makes sense because pressure decreases with an
increasing temperature, especially in a humid-subtropical climate
as found in Austin. In Utrecht, wind speed is negatively correlated
with both P and RH (i.e., when WS is high P and RH are usually low,
note that P and RH are not correlated). Understanding these (anti-)
correlations and dependencies help in explaining the performance
dependency of the regression models on the input meteorological
variables considered. Moreover, it provides guidance in selecting
and ranking the meteorological variables for classification and
regression tasks in the field of solar energy analytics and
forecasting.
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Fig. 1. Interdependence of the various meteorological variables amongst each other.
Temperature (T), dew point temperature (DP), humidity level (RH), visibility (V), air
pressure (P), wind speed (WS), cloud cover (CC), wind bear ing (WB) and precipitation
(R) (best viewed in color). (For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this article.)

2.4. Principal component analysis (PCA)

In this work, the PCA method is used to further analyze and
better understand the interdependence between the considered n
meteorological variables in each case study. In general, PCA is an
unsupervised linear transformation technique that is prominently
used for feature extraction and dimension reduction [27]. Using
PCA, it is possible to transform the input meteorological variables
data onto a new feature space that maintains the most relevant
information. This can be done by finding the directions of
maximum variance in the input data sets and project it onto a new
subspace with equal or fewer dimensions than the original one.

To find the principal components, first the variable matrix X is
standardized across each of the meteorological variables, with
respect to the mean and standard deviation of each vector. Then the
covariance matrix of the standardize variable matrix is constructed,
which stores the pairwise covariances between the different
meteorological variables. A positive covariance between two vari-
ables indicates that the variables increase or decrease together,
whereas a negative value indicates that the features vary in
opposite directions. After that, an eigenvectors and eigenvalues
decomposition of the covariance matrix is performed and the
resulted eigenvectors define the new orthogonal components, also
called “the principal components”, whereas the corresponding ei-
genvalues will define their magnitude. After sorting the eigen-
values by decreasing order and ranking the corresponding
eigenvectors, the first principal component will have the largest
possible variance (i.e., information), followed by the second prin-
cipal component with second largest variance and so on. It is worth
noting that the resulting principal components are mutually un-
correlated to each other even if the input variables are correlated
due to the orthogonality of the decomposed eigenvectors [27].

Fig. 2 illustrates the percentage of variance captured by each of
the resulting principal components using the n = 9 input meteo-
rological variables we consider in this study. The plots indicates
that in both locations the first principal component alone accounts
for approximately 27% of the variance in the input dataset. This
indicates that there is a high degree of correlation amongst the
input variables. Moreover, it can be observed from Fig. 2, that
cumulatively, around 86.3% and 80% of the variance in the data sets
is captured by the first 5 principal components in Austin and in
Utrecht, respectively. This means that the PCA enables to reduce the
amount of input variables. However, the whole set of input vari-
ables is needed to calculate the principal components in the first
place.

The biplot representation of the input meteorological variables
is depicted in Fig. 3. The figure illustrates the importance in terms of
the contribution of the input variables into the first two primary
principal components and confirms the correlation results in Fig. 1.
It can be noticed that the data is more spread along the x-axis (i.e.,
principal component 1) than the y-axis (i.e., principal component
2), which is consistent with the results of Fig. 2 and the percentage
of variance captured by each of the principal components (i.e.,
highest for principal component 1 in both case studies).

The biplots also show that the meteorological variables are
captured differently in the principal components that are generated
in both case studies as a result of the local climates. For instance, DP
has a high contribution to principal component 1 and 2 in Utrecht,
whereas this is only limited to principal component 1 in Austin. In
Utrecht CC and R are only captured in principal component 2 while
these variables contribute to both principal components in Austin.

Additionally, the biplots confirm the results we found in Fig. 1.
Moreover, Fig. 3 shows that T and DP are positively correlated with
each other, whereas P and DP are highly correlated with a negative
value. RH is at both locations strongly negatively correlated with V.
In addition, RH and CC are strongly positively correlated with each
other in case of Utrecht and significantly less correlated in Austin.

3. Methods
3.1. Regression methods

In this section, several ML-based regression methods are pre-
sented. These methods will be used to estimate the PV output
power p using the considered meteorological variables (see Section
2). There are n meteorological variables considered as input to the
estimation methods. The response vector p and each vector of the
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Fig. 2. Distribution of the captured variance across the several principal components.

meteorological variables are of the dimension m x 1, where m
indicates the number of observations in the considered assessment
period. Without the loss of generality, unless otherwise stated, we
will drop the index m from the subsequent discussion.

3.1.1. Multivariate linear regression (MLR)

Multivariate linear regression is one of the fundamental and
most widely used regression methods. The MLR model estimates
the PV output power, p"IR, as:

PMIR = B0 + B1V1 + BoVa + ... + ... + BpVi, (4)

where the Bs are the regression co-efficients.

3.1.2. LASSO regression (LR)
Least absolute shrinkage and selection operator (LASSO) is one
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(a) Austin.
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(b) Utrecht.

Fig. 3. Biplot representation of the meteorological variables in the first two principal
components.

of the common methods to regress the PV output power. It esti-
mates the PV output power by penalizing the regression co-
efficients (i.e., fs). Such penalty is useful to shrink the input
variables that are not very important in estimating the output
variable. If the applied penalty is too large, the estimation is shrunk
to zero. In this sense, LASSO is considered as a continuous feature
selection method [28]. This is useful in case some of the input
meteorological variables are correlated to each other. The regressed
PV output power using LASSO is calculated by solving the following
optimization problem:

minimize (p—vB) ' (p—vp),s.t. zn: 18] < h, (5)
1

where operator . denotes the vector transpose, v is the training
data of all meteorological variables and h is a user-defined



T. AlSkaif et al. / Renewable Energy 153 (2020) 12—22 17

threshold.

3.1.3. SVM regression

SVM regression, also known as SVR [29], has been shown to
obtain a good performance in the area of PV output power fore-
casting and estimation since it keeps low complexity and a good
fitting of data [30,31]. In this study, we use the non-parametric SVM
regression to estimate the PV output power. The linear SVM (L-
SVM) regression method attempts to estimate the PV output power
using the following optimization problem:

minimize %Hw \2, st.p—((w,v)+b) <e, (6)

where w is the weight, and the estimated PV power is ( w,v) + b.
The parameter ¢ serves as a threshold.

The kernel, or non-linear, SVM (K-SVM) regression has the same
formulation, with the dot product (w,v) replaced by a kernel
function.

3.1.4. Random forests (RF)

Random forests is an ensemble-based regression method that
consists of an ensemble of decision/regression trees, whose results
show the mean prediction of individual trees. In RF a number of
decision trees is generated with a set of n layers for each tree. At
each layer in every tree, there are 2" decision nodes with n = 0 at
the first layer. Every decision node has its own characteristic vari-
able conditions and based on these conditions, the node will pass a
true or false to the node in the next layer (n+ 1). In the last layer
(i.e., leaf layer), this will result in an estimation of the target value
based on the average of all samples reaching that node. Every tree
in the random forest is trained using a random subset of the
training data. The same training data can be selected by different
trees in the forest [32].

Random forests has recently been considered as a promising
method in the area of PV output power forecast [9,16]. We use
random forests in our work to fit the response vector p using the
training input variables vectors v, and train 100 regression trees
using the least squares boosting (LSBoost) algorithm [32]. The
ensemble attempts to fit a new learner, at every iteration, by
computing the difference between observed response value, and
the accumulated prediction of all learners developed previously.

3.2. Variables importance

This section provides a method to analyze the importance of
each vector of input meteorological variables when estimating the
PV output power. To do that, a regression ensemble model is
trained using the response vector p, and the predictor variables
vectors vy, Vi, ..., Vg in X. The MATLAB function predictor-
Importance is then used to estimate the importance of each of
these predictor vectors in regressing the PV output power p. It es-
timates the importance of a predictor variable vector for the
regression ensemble by accumulating the estimates over all the
weak learners in the ensemble. The output of the function has one
element for each input predictor in the data used to train the
ensemble — a higher value for this element indicates that the
particular variable has more importance in regressing the PV
output power.

4. Results and discussions
4.1. Importance of meteorological variables

The same 9 meteorological variables are used to perform the

importance analysis for the case studies in Austin and Utrecht over
a period of 3 years. The least squares boosting (LSBoost) algorithm
is used as a regression ensemble model for the predictor-
Importance MATLAB function. Fig. 4 shows the importance of all
input predictor variables v; in PV output power estimation. The
figures show some distinctive differences between the studied lo-
cations. In general, in Austin more variables are found to be of
importance in estimating the PV output power compared to
Utrecht. In addition, the order of the most important variables does
not overlap for both locations (e.g., T and RH are found to be the
most important variable for Austin and Utrecht, respectively).
Subsequently, DP is found to be the fifth important variable in
Utrecht, whereas it is the third in Austin. The limited importance of
DP in Utrecht could be explained by the strong correlation observed
between DP with T (see Fig. 1). Similarly, RH is found to have a
strong negative correlation with T in Utrecht, which may explain

x107#

Importance of individual variables

T DP RH V P WS CC WB R
Meteorological variables

(a) Austin sites.

25 T T T T T T T

15 r 1

0.5 r ]

Importance of individual variables

T DP RH V
Meteorological variables

P WS CC WB R

(b) Utrecht sites.

Fig. 4. Importance of the meteorological variables in estimating the PV output power.
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Fig. 5. Scatter plots between the measured (p) and estimated (p) PV output power values (for n = 9) for an arbitrary PV system in Austin (a) and Utrecht (b). The regression
methods are: multivariate linear regression (MLR), random forests (RF), LASSO regression (LR), linear support vector machine (L-SVM) and kernel support vector machine (K-SVM).

the lower importance of T in that location. However, also some
similarities can be observed. In both locations, although in a
different order, RH, T and V belong to the most important variables.
CC scores the fourth variable for estimating PV output power in
both case studies. However, CC is almost not important for Utrecht
and shows a different behavior in Austin. This could be related to
the cloudiness measurements available in oktas which could be a
better proxy for estimating PV output power in Austin than in
Utrecht.

It is important to note that Fig. 4 explains which predictors are
the best indicators for estimating PV output power rather than
what variables affect the PV output power generation. For instance,
CC could affect PV generation more than T, however, T proofs to be
more correlated or more important for estimating PV output power.
The figure also shows that the importance and ranking of the var-
iables depend on the climate of the considered area of study.

4.2. Estimation performance evaluation

In this section, we evaluate the different benchmarking ML-
based regression methods mentioned in Section 3. In addition,
we compare the performance of each method when using the
original dimension of meteorological variables (i.e., n = 9) with the
performance when using a lower-dimensional subspace of mete-
orological variable. The input of the models consists of 3 years data
of meteorological variables and PV output power of multiple PV
systems in Utrecht and Austin (see Section 2). The meteorological
variables considered in the reduced subspace are the n = 4 vari-
ables that are found to be most important in describing the PV
output power, which are in order T, RH, DP and CC for Austin, and
RH, V, T and CC for Utrecht (see Section 4.1). In addition, since Fig. 4
shows a different magnitude in the importance of the meteoro-
logical variables between the two case studies, additional experi-
ments for regressing the PV output power are carried out when
considering only the top n = 3 variables. The performance evalu-
ation and comparison of the regression methods are achieved using
different performance metrics, namely mean absolute error (MAE),
root mean squared error (RMSE), mean squared log error (MSLE)
and mean bias error (MBE). These performance metrics are

respectively defined as follows:

R 1 Mgamples— 1 R
MAE(p,p)=——— > |pc—Pil, (7)
samples  t—p
Mgamples— 1
RMSE(p, p) = > (pe-po (8)

Msamples [

msamples -1

~ 1 ~
MSLE(p.p)=-——— > (loge(1 +pr) —loge(1 + py))*.
samples  ;—o
(9)

1 Mamples — 1

MBE(p,p)=——— > (Pt —Dr). (10)

samples  t—o

As described in Section 4.1, the first two years of data describing
the meteorological variables and the PV output power of each PV
system are used as a training set for all the regression methods. The
regression coefficients of all methods are learned from the output
power of each PV system individually. The trained models are then
used for estimating the PV output power for the third year of the
initial data sets. The results are then evaluated by the error metrics
presented above.

Fig. 5 shows scatter plots holding the measured p and estimated
P PV output power values for an arbitrary PV system in the two case
studies and using the five different regression methods described in
Section 3. The whole set of predictor variables (i.e.,, n = 9) are used
to estimate the PV output power. These scatter plots show how the
estimation by each method is distributed along the PV output po-
wer measurement. From the figure it can be observed that the
linear regression methods are slightly skewed in a way that low PV
output power values are often overestimated and higher PV output
power values are repeatedly underestimated. The nonlinear K-SVM
and RF methods appear to be slightly less vulnerable to this.

Fig. 6 presents the summarized results of the different
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(b) Utrecht sites.

Fig. 6. Performance evaluation of the benchmarking regression methods on 24 distinct households in Austin and 10 in Utrecht when considering all meteorological variables (n =
9). All experiments are performed individually for all households. In each box plot, the top and bottom blue edges indicate the 75th and 25th percentiles, respectively. The central
red mark represents the median and the outliers are indicated by the red ‘+’ symbols. (For interpretation of the references to color in this figure legend, the reader is referred to the

Web version of this article.)

regression methods for all PV systems in both case studies.
Consequently, the box plots holds the error value of each PV system
considered in the case study of interest. Similarly, the n= 9
meteorological variables are used to estimate the PV output power

in this experiment. From Fig. 6 a general trend can be observed
regarding the performance of the different estimation methods.
Firstly, in both case studies the K-SVM regression method shows a
better estimation performance in terms of the MAE, RMSE and
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MSLE. This means that K-SVM outperforms the other methods in
capturing the nonlinear relationship between the input meteoro-
logical variables and the response PV output power. Secondly, the
MLR, LR and L-SVM regression methods are found to achieve very
similar results at each location. Moreover, these comparable results
are likely the outcome of the fact that all those three methods
describe a linear relationship between the predictor and response
variables. Finally, the RF method is the second best performing
method in the case of Utrecht. This can be explained as the RF
method is capable to some extent of capturing the nonlinear rela-
tionship between the input and output variables. In terms of the
MAE, this also holds for Austin. However, it is remarkable that when
we consider the RMSE, we find that all methods outperform RF in
the case of Austin. A lower observed MAE and a higher RMSE im-
plies that RF performs better in general, but at the same time is
coupled with more extreme outliers. Consequently, the PV output
power estimate by the RF method proves to be more often signif-
icantly wrong. This can also be observed in Fig. 5, where the scatter
plot of RF in Austin is more cloudy. The box plots in Fig. 6 also
present the MBE observed per method. A positive bias is observed
for all methods in both Austin and Utrecht, which implies that all
models underestimate the PV output power. This underestimation
is more significant for Utrecht than Austin. In the latter, a number of
methods also overestimate the total output power of a few PV
systems which are indicated as the 25th percentile and/or some
outliers.

4.3. Reduced subspace estimation performance evaluation

The estimation performance of the different regression methods
when reducing the space of input meteorological variables is pre-
sented in Table 1. The table shows the average increase/decrease in
estimation error of the different performance metrics when a
lower-dimension subspace (i.e., n = 4 and n = 3) of predictor var-
iables is used compared to the full space (i.e., n = 9). In the table, a
negative sign (—) indicates a performance improvement.

From the table it can be concluded that the two case studies,
Austin and Utrecht, are very differently affected by reducing the
space of input meteorological variables for the regression methods.
This impact is more significant in Austin than Utrecht. The results in
the table for Austin indicate that the regression methods MLR, RF
and L-SVM perform slightly better when n =4 meteorological
variables are considered instead of n = 9. This increased uncer-
tainty in the PV output power estimation when considering a larger
number of input variables can be caused by two main reasons. First,
as Fig. 4 indicates, the importance of many of the input variables is
limited, such that the predictors hold limited information for

Table 1

estimating the PV output power. Therefore, considering those
variables cloud the estimation and add to the estimation uncer-
tainty. Another explanation could be that by selecting only n = 4
variables, some variables are excluded which have a high (anti)
correlation with some of the selected variables. For example, in
Fig. 1 the variable V, which is excluded when n = 4, showed to be
highly negatively correlated with the selected variables CC and RH.
By excluding the correlated variable, the regression methods are
less prone to issues that may occur as a result of the effect multi-
collinearity has on estimating the model coefficients. Similar to
MLR, RF and L-SVM, the performance of the K-SVM method also
improves in terms of the MAE when n = 4 variables are selected.
However, the performance of this method worsens in terms of the
RMSE and MSLE. This implies that as the input variables reduced to
n = 4, the estimated values hold more outliers and higher relative
errors. In contrast to the other methods, the performance of LR in
terms of the MAE, RMSE and MSLE lessens as less information is
available from the input variables considered. This indicates that LR
is able to deal with the issues discussed above and extract some
additional information of the correlated or less important variables.
Finally, in Austin a significant poorer performance for all methods is
found when n = 3 predictor variables are considered. Therefore, it
is found that excluding CC highly affects the performance of all
regression methods.

In Utrecht, it is noticed that except for RF, the performance of all
methods is getting slightly worse when the top n = 4 meteoro-
logical variables are considered. The improved importance of RF
may be explained as the additional variables, that were found to be
of very limited importance in Fig. 1, cloud the performance of the
regression method. Due to the random features considered while
training the RF method, this could affect RF more than the other
regression methods. All methods are found to perform worse when
considering the top 3 predictors only. Remarkably, removing the CC
as an input variable affects the performance of K-SVM significantly
more compared to the other methods. From Fig. 4 it can be
observed that CC is significantly less important than the top 3
variables. This could explain the limited impact of removing the
variable in estimating the PV output power in case of MLR, RF, LR
and L-SVM. Moreover, from the results it can be concluded that K-
SVM is able to capture the additional information that CC holds.
Although less significant, the same trend can be observed in Austin.
The capability of K-SVM to extract this additional information
translates into a higher model performance that we observed in
Fig. 6. Finally, although not significant from the table it can be
observed that the performance of LR improves in terms of the
MSLE. This implies that there are less relative large estimation er-
rors when less predictor variables are considered. The same can be

Average increase/decrease in estimation error of the different performance metrics for the different regression methods when using the reduced space (i.e., top 4 and 3
variables) compared to the full space (i.e., 9 variables). The most important meteorological variables were found to be: RH, Tand V and WB for Austin, and RH, V, Tand CC for
Utrecht (see Section 4.1), ordered from most important to less important variables. The decrease in estimation error is represented by a negative sign (—). All experiments are
performed individually for each site in the two case studies before calculating the average.

Methods MAE RMSE MSLE
Top 4 variables Top 3 variables Top 4 variables Top 3 variables Top 4 variables Top 3 variables
Austin sites MLR -0,2% 5,3% -0,3% 8,4% -1,0% 12,2%
RF -3,2% 2,5% -1,7% 6,3% -3,6% 10,8%
LR 1,2% 6,4% 0,7% 8,4% 0,4% 12,6%
L-SVM -0,1% 5,7% -0,3% 9,2% -1,3% 13,6%
K-SVM -1,4% 8,3% 1,6% 16,1% 3,1% 34,0%
Utrecht sites MLR 0.4% 1,0% 0,4% 1,3% 0,5% -1,0%
RF —4,7% 1,5% -1,9% 2,9% —6,5% 3,6%
LR 0,1% 1,0% 0,2% 1,1% —-0,4% —-0,6%
L-SVM 0,6% 1,5% 0,4% 1,6% 1,1% 0,6%
K-SVM 0,4% 6,2% 1,7% 6,9% 3,1% 16,0%
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observed for the MLR model when n = 3 input variables are taken
into account.

As mentioned above and shown in Table 1, the average increase
or decrease in estimation error when using a lower-dimension
subspace, i.e. n = 4 is relatively limited for all regression methods
in the two case studies. The relative increase in errors becomes
more significant for most regression methods when n = 3 input
variables are considered in the case of Austin as well as for the K-
SVM method in Utrecht. This indicates that, depending on the
regression method and location, a low number of meteorological
variables recordings is enough to generate similar results without
affecting the performance (i.e., n = 4 compared to the full space of
n =9 variables). A similar effect may be expected in the case of
solar power forecasting, where a lower-dimensional subspace
could achieve a similar performance as achieved when considering
multiple input variables. To increase the reliability of the results,
the methods require testing under different conditions (e.g., addi-
tional climates, more PV systems and different PV systems instal-
lation settings). For instance, the performance could be different in
other climates where other meteorological variables could be more
important. As seen in Fig. 4, the selected variables in the lower-
dimension subspace were different based on the climate of the
area of study and therefore the performance of the regression
methods. This might also explain why some exogenous forecasting
models perform differently in different regions.

5. Conclusions and future work

This paper provided a systematic analysis of different input
meteorological variables in the context of PV output power esti-
mation. A complete 3 years of meteorological and PV output power
data are used to establish the relation between the two data sets.
Besides, the study provides methods to assess the interdependence
of the meteorological variables and the importance of the variables
in estimating the PV output power. Consequently, this study shows
how the importance of variables and the estimation accuracy de-
pends on the regression method and the climate zone.

In addition, we compared the performance of the regression
methods when considering a lower-dimension subspace of pre-
dictor meteorological variables in two different case studies with
different climate zones. The numerical evaluation showed that
using a lower-dimension subspace of meteorological variables, as
an input for the estimation methods, can result in a similar esti-
mation accuracy. However, the results also show that both the most
important input variables as well as the effect of selecting only the
top variables on the performance highly depends on the location of
interest. The proposed work may provide insights to test the per-
formance of forecasting models based on lower-dimensional sub-
space instead of using all available input meteorological variables.
The analysis and methods used in this study are generic and can
also be used to perform similar analysis for other climate zones.

The work presented in this paper could be considered as a first
step towards closing the research gap on which and how much
meteorological variables are required for accurate PV output power
estimation using ML techniques. Our future works will focus on
using the established methodology and expanding the analysis to
other locations of different climate zones. This would require
worldwide records of meteorological data accounting to many
different climates. In addition, we aim to assess and benchmark the
estimation performance of PV output power by considering addi-
tional ML-based regression models.
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