期刊论文详细信息
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING 卷:804
High temperature nanoindentation of Cu-TiN nanolaminates
Article
Wheeler, Jeffrey M.1,2  Harvey, Cayla3  Li, Nan4  Misra, Amit5  Mara, Nathan A.6  Maeder, Xavier2  Michler, Johann2  Pathak, Siddhartha3,7 
[1] Swiss Fed Inst Technol, Lab Nanomet, Dept Mat, Vladimir Prelog Weg 5, CH-8093 Zurich, Switzerland
[2] Empa, Swiss Fed Labs Mat Sci & Technol, Lab Mech Mat & Nanostruct, Feuerwerkerstr 39, CH-3602 Thun, Switzerland
[3] Univ Nevada, Chem & Mat Engn, Reno, NV 89557 USA
[4] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA
[5] Univ Michigan, Mat Sci & Engn, Ann Arbor, MI 48109 USA
[6] Univ Minnesota, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA
[7] Iowa State Univ, Dept Mat Sci & Engn, 2220BP Hoover Hall,528 Bissell Rd, Ames, IA 50011 USA
关键词: Indentation;    Nanolaminates;    Multilayers;    High temperature deformation;    Activation energy;   
DOI  :  10.1016/j.msea.2020.140522
来源: Elsevier
PDF
【 摘 要 】

We examined the high temperature indentation response of physical vapor deposited Cu-TiN multilayered nanocomposites with layer thicknesses ranging from 5 nm to 200 nm. A decrease in hardness with increasing temperature was observed, along with a strong correlation between the hardness and the nanometer-level TiN grain sizes, rather than layer thickness. The apparent activation energies calculated from the high temperature indentation experiments indicated that, for all but the smallest layer thicknesses, the deformation of copper in the nanolaminates dominate the plastic response in these composites. In the finest layer thicknesses, a decrease in the apparent activation energy value indicated possible co-deformation of Cu and TiN.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_msea_2020_140522.pdf 2141KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:1次