期刊论文详细信息
STOCHASTIC PROCESSES AND THEIR APPLICATIONS 卷:130
Estimates of Dirichlet heat kernel for symmetric Markov processes
Article
Grzywny, Tomasz1  Kim, Kyung-Youn2  Kim, Panki3,4 
[1] Wroclaw Univ Sci & Technol, Dept Pure & Appl Math, Wybrzeze Wyspianskiego 27, PL-50370 Wroclaw, Poland
[2] Bielefeld Univ, Fac Math, Univ Str 25, D-33615 Bielefeld, Germany
[3] Seoul Natl Univ, Dept Math Sci, Bldg 27,1 Gwanak Ro, Seoul 151747, South Korea
[4] Seoul Natl Univ, Res Inst Math, Bldg 27,1 Gwanak Ro, Seoul 151747, South Korea
关键词: First exit time;    Dirichlet heat kernel;    Heat kernel;    Markov process;    Transition density;    Green function;    Boundary Harnack inequality;   
DOI  :  10.1016/j.spa.2019.03.017
来源: Elsevier
PDF
【 摘 要 】

We consider a large class of symmetric pure jump Markov processes dominated by isotropic unimodal Levy processes with weak scaling conditions. First, we establish sharp two-sided heat kernel estimates for these processes in C-1,C-1 open sets. As corollaries of our main results, we obtain sharp two-sided Green function estimates and a scale invariant boundary Harnack inequality with explicit decay rates in C-1,C-1 open sets. (C) 2019 Published by Elsevier B.V.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_spa_2019_03_017.pdf 669KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次