期刊论文详细信息
STOCHASTIC PROCESSES AND THEIR APPLICATIONS 卷:124
Two-sided estimates for the transition densities of symmetric Markov processes dominated by stable-like processes in C1,n open sets
Article
Kim, Kyung-Youn1  Kim, Panki1,2 
[1] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 151747, South Korea
关键词: Dirichlet form;    Jump process;    Jumping kernel;    Markov process;    Heat kernel;    Dirichlet heat kernel;    Transition density;    Levy system;   
DOI  :  10.1016/j.spa.2014.04.004
来源: Elsevier
PDF
【 摘 要 】

In this paper, we study sharp Dirichlet heat kernel estimates for a large class of symmetric Markov processes in C1,n open sets. The processes are symmetric pure jump Markov processes with jumping intensity K (x, Y)1fri. (Ix Y 1)-1 lx Y d cg, where a E (0, 2). Here, Vri is an increasing function on [0, oo), with *I (r) = 1 on 0 < r < 1 and c1ec2rfi < (r) < c3ec4rfi on r > 1 for,8 E [0, oo], and K (x, y) is a symmetric function confined between two positive constants, with 1K (x, y) tc(x, x) I < C5 lx y IP for Ix y I < 1 and p > a/2. We establish two-sided estimates for the transition densities of such processes in C1'17 open sets when n E (a/2, 1]. In particular, our result includes (relativistic) symmetric stable processes and finite-range stable processes in C101 open sets when ri E (a/2, 1]. (C) 2014 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_spa_2014_04_004.pdf 351KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次