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Abstract

In this paper, we study sharp Dirichlet heat kernel estimates for a large class of symmetric Markov
processes in cln open sets. The processes are symmetric pure jump Markov processes with jumping
intensity & (x, y)¥r (|x —y|)71 |x —y|7d7°‘, where o € (0, 2). Here, v/ is an increasing function on [0, c0),
with ¥1(r) = 1on0 < r < 1 and c]ecﬂﬂ < Yi(r) < C3€C4rﬂ onr > 1 for B € [0, o0], and k(x, y) is
a symmetric function confined between two positive constants, with |« (x, ¥) — k(x, x)| < ¢5|x — y|? for
[x —y| < 1 and p > /2. We establish two-sided estimates for the transition densities of such processes in
cln open sets when 1 € («/2, 1]. In particular, our result includes (relativistic) symmetric stable processes
and finite-range stable processes in C Ln open sets when n € («/2, 1].
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1. Introduction

Discontinuous Markov processes form a large class of stochastic processes containing stable-
like processes and relativistic stable-like processes. Recently, discontinuous Markov processes
have often been used to simulate physical and economic systems that cannot be modeled by
Gaussian processes (see [32,24,34-36]). Because of such importance in both theory and practice,
there has been intense interest in studying discontinuous Markov processes.

Throughout this paper we assume that 8 € [0, co], « € (0,2),and d > 1. Let R4 be the d-
dimensional Euclidean space and dx be the d-dimensional Lebesgue measure in R?. For x € R?
and r > 0, let B(x, r) denote the open ball centered at x with radius r. The Euclidean distance
between x and y will be denoted by |x — y|. For two nonnegative functions f and g, the notation
f < g means that there are positive constants c; and ¢ such that c1g(x) < f(x) < cag(x) in
the common domain of definition for f and g. We will use the symbol “:=”, which is read as “is
defined to be”. For any Borel set A C R, we will use diam(A) to denote its diameter and |A| to
denote its Lebesgue measure.

The infinitesimal generator £ of a discontinuous symmetric Markov process ¥ =
(Y1, Py);>0, xerd 18 @ symmetric integro-differential operator, and under some mild assumptions
the distribution Py (Y; € dy) is absolutely continuous, for every x € R4 and ¢ > 0, with
respect to Lebesgue measure in R?. We will use p(z, x, y) to denote the transition density of
Y so that P, (Y; € A) = [, p(t, x, y)dy. For any open subset D C R¢, we denote by Y ? the
subprocess of Y killed upon leaving D, and we use pp(t, x, y) to denote the transition density
of YP.

The transition density pp(¢, x, y) describes the distribution of the process Y D, Conversely,
from an analytic viewpoint, pp(t, x, y) is also called a Dirichlet heat kernel of the operator £
on D, because it is a fundamental solution of d;u = Lu and u = 0 on D€. Thus, obtaining sharp
two-sided estimates of pp(¢, x, y) is a fundamental problem in both analysis and probability
theory. However, it is not easy to obtain two-sided estimates of pp(z, x, y), especially near the
boundary. For Dirichlet heat kernel estimates for killed diffusions, see [18-20] for the upper
bound and [40] for the lower bound on bounded C!:! connected open sets.

A prototype of discontinuous Markov processes is a (rotationally) symmetric «-stable Lévy
process where o € (0, 2). The infinitesimal generator of a symmetric «-stable Lévy process is

a fractional Laplacian A%/? = —(—A)*/? that is a nonlocal operator. Recall that A%/? can be
defined as
a/2 . dy
A u(x) = A(d, —a) lim (u(y) —u)——s> (1.1
£=0 J{yeRd:|y—x|>¢) |x — ¥

where T is the Gamma function and A(d, —«) = «2¢~ 1z —4/2T (‘1%) (1 —a/2)~!. Thus,
it is a pure jump process and has a Lévy density y — A(d, —a)|y|~¢~%. Chen et al. [10]
obtained the Dirichlet heat kernel estimates for the symmetric a-stable process X in C!:! open
sets.

Another example of discontinuous Markov processes is a relativistic a-stable process X with
mass m > 0, which is a Lévy process with a characteristic function given by

E, [eis-(xy_xgl)] = exp (—t ((Iél2 + mz/"‘)o{/2 - m)) for every x, & € RY.

The corresponding infinitesimal generator is m — (m*/* — A)*/?_ In particular, for & = 1 the

operator m — +/m? — A is called the free Hamiltonian corresponding to the quantization of the
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kinetic energy for a relativistic particle of mass m (e.g., see [5,33]). The Lévy density of X" is

s r2

J™(y) = A(d, —a)|y| "7y m"/¥|y])  where ¥ (r) :=f s e s,
0

¥ is decreasing and is a smooth function of r? satisfying ¥(r) < 1 and ¥(r) < e " (1 +
rd+e=D/2y on [1, 00) (see [16, pp. 276-277] for details). Thus, J™ (y) is dominated by the Lévy
density of the symmetric «-stable process. The approach developed in [10] provides a guideline
for establishing sharp two-sided heat kernel estimates for other discontinuous Lévy processes in
open subsets of R, For example, two-sided Dirichlet heat kernel estimates for X™ are discussed
in [12]. Very recently two-sided Dirichlet heat kernel estimates were extended to a large class of
symmetric Lévy processes in [13,14].

In this paper, motivated by [8,10,12] we consider a large class of symmetric Markov processes
(not necessarily Lévy processes) whose jumping kernels are dominated by the kernel of the
fractional Laplacian. We establish the two-sided estimates for Dirichlet heat kernels of the
generators of such Markov processes in (possibly unbounded) C" open sets D. When D is R¢,
such a problem has been discussed in [25,38,39]. Our result extends the main results in [10,12]
and provides far more.

Let us now describe our assumptions and fix the notation simultaneously. Let i; be an
increasing function on [0, co) with ¢1(r) = 1 for 0 < r < 1, and let there be constants
y1, 2 > 0and B € [0, oo] so that

L1 < y1(r) < Lye”” forevery 1 <r < o0, (1.2

for some constants L1, Ly > 0. We define

1
i(r)= —— 0. 1.3
Jj(r) rd"'“tﬂ] (r) e (1.3)
We assume that « (x, y) is a positive symmetric function with
Ly' <k(x,y)<Ls, x,yeR’ (14)
and
lie(x, ) = ke, X) [ xoyj<n) < Lalx — y|°,  x,y € RY, (1.5)

where p > «/2 and L3, L4 are positive constants. Let J be a symmetric measurable function on
R? x R? \ {x = y} such that

J(x,y) =x(x, ) jlx =yl

_ {x<x, e =37y (x = yD~" if B € [0, 00),

. ) (1.6)
K (x, P)Ix = Y7 oy <y if B = oo.

For u € L*(R? dx), we define E(u,u) = 27" [pa pa@(x) — u(y))?J (x, y)dxdy. Let
C.(R%) denote the space of continuous functions with compact support in R¢ and equipped
with uniform topology. We define

D(E) = {f € Cc(RY) : E(f, f) < o0} (1.7)
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By [15, Proposition 2.2], (£, F) is a regular Dirichlet form on LZ(R", dx), where £ (u, u) =

Ew,u) + fRd u(x)?dx and F = D(é’)gl. Hence, there is a Hunt process on R associated with
this Dirichlet form (see [21]).
We say UJS holds for a jumping kernel J if for a.e. x, y € R?,

~ ~ 1
J(x,y) < %/ J(z,y)dz wheneverr < —|x — y|. aJs)
r¢ JB.r) 2

Note that, since j is decreasing and J (x, y) < j(|x — y|), we have

/ J(z,y)dz
B(x,r)

v

f c1j(z — yhdz
B(x,r)N{|z—y|<|x—y[}

v

car®j(lx —yD) = e3r?J (x, y)

for every r < |x — y|/2. Thus UJS holds for our J. Moreover, our conditions (1.2)—(1.4) imply
that [8, (1.6)] holds with ¢(r) = r*y1(r). Thus, the Hunt process Y associated with (£, F)
belongs to a subclass of the processes considered in [8]. Therefore, Y is conservative and it has a
Holder continuous transition density p(¢, x, y) on (0, 0o) x R x R¢ with respect to the Lebesgue
measure.

The function J is called the jumping intensity kernel of Y, because it gives rise to a Lévy
system for ¥ describing the jumps of the process Y. For any x € R?, stopping time S (with
respect to the filtration of Y), and nonnegative measurable function f on Ry x RY x R¢ with
f(s,y,y) =0forall y € R? and s > 0 we have

S
E, [Z FG Y, m} K, [ / ( [, e v, y)dy) ds] (1.8)

s<S§

(e.g., see [15, Appendix A]).

We first consider the estimate for the transition density p(z, x, y) of Y in R?. Hereinafter, for
a,b € R, we have a A b := min{a, b} and a VvV b := max{a, b}. For each a, T, y > 0, we define
a function hy , 7(t,r)on (t,r) € (0, T] x [0, 00) as

A p gpmd—apmyr’ if B € [0, 11,
AN if B € (1, 00] with r < 1,
B—1
h t,r) = Tr\ 7 1.9
ayr.r) texpy—alr (logTr) ArP if B € (1, 00) with r > 1, (1.9)
(t/(Tr)™ if B = oo with r > 1.

Even though in [15, Theorem 1.2] and [8, Theorems 1.2 and 1.4] two-sided estimates for
p(t, x, y) are stated separately for the cases 0 < ¢ < l and ¢ > 1 (not forthe cases 0 <t < T
and t > T for some fixed constant 7 > 0), the same proofs work for the cases 0 < ¢+ < T and
t > T. We state two-sided estimates for p(¢, x, y) for the case 0 < ¢t < T, which we will use.

Theorem 1.1. Suppose that Y is the symmetric pure jump Hunt process with the jumping inten-
sity kernel J defined in (1.6). Then, the process Y has a continuous transition density function
p(t,x,y) on (0,00) x R? x Re. For each positive constant T, there are positive constants
Ci,c1, and ¢y > 1 which depend on «, 8,d, L3, Y1, T such that for every t € (0,T] the
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function p(t, x, y) has the following estimates:
-1
¢y hey . r(t, [x —y) < pt,x,y) < caheyy. 1 |x = yD). (1.10)

Note that, unlike those in [8, Theorem 1.2], the exponents y; and y» in Theorem 1.1 are
explicit. When 8 € [0, 1], the upper bound in (1.10) comes from [25, Theorem 2, Proposition 1].
We omit the proof of the upper bound in (1.10) for 8 € [1, oo], since the proof is the same, as
mentioned above. However, in Section 3, the lower bounds in (1.10) will be proved as a special
case of the preliminary lower bound on the heat kernel of the killed process.

The goal of this paper is to obtain the sharp two-sided Dirichlet heat kernel estimates for Y
on C open sets for n € (a/2, 1]. For any open set D, we use 7 to denote the first exit time
from D by the process Y, and we use Y ? to denote the process obtained by killing the process
Y upon exiting D. By the strong Markov property, it can easily be verified that pp (¢, x, y) =
p(t,x,y) —Ex[p(t —tp, Yr,, y); t > Tp] is the transition density of YD, Using the continuity
and estimate of p, it is routine to show that pp(t, x, y) is symmetric and continuous (e.g., see
the proof of Theorem 2.4 in [17]).

Recall that an open set D in R4 (when d > 2) is said to be C L0 with n € (0, 1] if there
exist a localization radius R > 0 and a constant A > 0 such that for every z € 3D there exist
a Cl-function ¢ = ¢, : RY™1 — R satisfying ¢(0) = 0, V¢(0) = (0, ...,0), Vol < A,
IVp(x) — Vo (w)| < Alx — w|" and an orthonormal coordinate system CS;, of z = (zy, ...,
Zd—1,2d) = (Z, z4) with origin at z such that B(z, R) N D = {y = (J, y4) € B(z, R)inCS;, :
ya > ¢(3)}. The pair (R, A) will be called the C'" characteristics of the open set D. Note that a
cln open set D with characteristics (R, A) can be unbounded and disconnected, and the distance
between two distinct components of D is at least R. By a C!»7 open set in R we mean an open
set that can be written as the union of disjoint intervals so that the minimum of the lengths of all
these intervals is positive and the minimum of the distances between these intervals is positive.

When g € (1, oo], we need to make an assumption for D in order to obtain the lower bound
of pp(t, x, y). We say that the path distance in each connected component of D is comparable
to the Euclidean distance with characteristic A1 if for every x and y in a same component of D
there is a rectifiable curve / in D which connects x to y such that the length of [ is less than or
equal to A1 |x — y|. Clearly, such a property holds for all bounded C! open sets, C!" open sets
with compact complements, and connected open sets above graphs of C!»7 functions.

We are now ready to state the main result of this paper. Recall that C; is the constant in
Theorem 1.1. Let §p(x) be a distance between x and D¢, and let

3D(X)“/2>

N (1.11)

U(t,x) = (1 A

Theorem 1.2. Suppose that Y is the symmetric pure jump Hunt process with the jumping
intensity kernel J defined in (1.6). Suppose that n € (a/2, 1], T > 0, and D is a C'" open set in
R with characteristics (R, A). Then, the transition density pp(t, x, y) of Y has the following
estimates.

(1) There is a positive constant ¢c; = ci1(a, 8, R, A, T,d, 1, L3, L4, n) such that for all
(t,x,y) € (0, T] x D x D we have

Pot.x.y) < e V(e x) V(1. y) {Z?f‘ﬁfﬁ"_xyf/g/ A
LYl ’ *
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(2) There is a positive constant ¢ = ca(o, B, R, A, T,d, Y1, L3, L4, 1) such that for all
(t,x,y) € (0, T] x D x D we have

pp(t,x,y) = U(t,x)¥(t,y)

17409 N flx — y|mdmee e g e 0, 1,
if Be(l,00)and|x —y| <1,

X —d/a
or B =ooand|x —y| <4/5.

At — y| 74

(3) Suppose in addition that the path distance in each connected component of D is comparable
to the Euclidean distance with characteristic A. Then, there are positive constants ¢; =
cila, B, R, A\, T,d, Y1, L3, La,n, A1), i = 3,4, such that if x, y are in a same component
of Dandt € (0, T], we have

pp(t,x,y) > c3 ¥(t,x)¥(1,y)
« {h04,y2,T(ta lx =y if Be(l,00)and|x —y|l =1,
heyyo,v(8,51x — y|/4) if B =o00and |x —y| = 4/5.
@) If B € (1, 00), there is a positive constant cs = c¢5(a, 8, R, A, T, d, ¥\, L3, La, 1) such that
for every x, y in different components of D with |x — y| > 1 and t € (0, T] we have

t .
pot.x.y) > cs W(t, x) U(t, y) ————— ¢ 12Oy I/H",
|x — y|dte

(5) Suppose in addition that D is bounded and connected. Then, there are positive constants
¢i = ci(a, B, R, A, T,d, ¥, L3, Lg,n,diam(D)), i = 6,7, such that for all (t,x,y) €
[T, 00) x D x D we have

coe™ M 5p (02 5p (1 < ot x, y) < 7 e 5p (02 8p ()72,
where —\P < 0 is the largest eigenvalue of the generator of YP.

The cutoff values 5/4 in Theorem 1.2(3)—(4) (and 4/5 in Theorem 1.2(2)) are not essential.
Further analysis reveals that for any ¢ > 0 we can choose 1 + ¢ as the cutoff value. However, it
seems that we cannot choose 1 as the cutoff value.

If D is a C" connected open set and the path distance in D is comparable to the Euclidean
distance, then by Theorem 1.2(1)—(4) we can rewrite the two-sided estimates for pp (¢, x, y).

Corollary 1.3. Suppose that Y is the symmetric pure jump Hunt process with the jumping in-
tensity kernel J defined in (1.6). Suppose further that D is a C'" connected open set with
n € (a/2, 1] and that the path distance in D is comparable to the Euclidean distance with char-
acteristic ). Then, for each T > 0 there exist ¢c; = cj(«, B, R, A, T,d, Y1, L3, L4, n, A1) > 0,
i = 1,2, such that for every t € (0, T] we have

MW, )T, Y hey 7,51 — ¥1/4) < pp(t, x, y)
S C[ W(tv X)W(t, y)hclA}/l,)/l,T(tv |x - )’|/6)

The boundary Harnack principle for classical harmonic functions (for Brownian motion)
describes how harmonic functions decay near the boundary of D. This principle is important
to studies of not only boundary value problems for partial differential equations but also
the potential theory of Markov processes. The boundary Harnack principle has recently been
generalized to a large class of discontinuous processes (see [2—4,22,26,27,30,37]).

Unfortunately, the boundary Harnack principle does not hold for our process ¥ when g > 1
(see [4,26] for counterexamples). This is one of the main difficulties in obtaining the boundary
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decay rate of pp (¢, x, y). In this paper, by using Dynkin’s formula and the test function method,
the key estimates for exit distributions are obtained directly.

Note that when D is bounded, Theorem 1.2 gives the sharp estimates for pp(z, x, y) for all
t > 0, and the estimate for pp(t, x, ¥) has the same form as that obtained for symmetric stable
processes in [10]. Thus, by integrating the two-sided heat kernel estimates in Theorem 1.2 with
respect to ¢ and following the proof of [10, Corollary 1.2], the estimates for the Green function
Gp(x,y) = fooo pp(t, x, y)dt in [10] can be extended to cln open sets. Since the proof is the
same, we omit the proof.

Corollary 1.4. Suppose that Y is the symmetric pure jump Hunt process with the jumping
intensity kernel J defined in (1.6). Suppose further that n € («/2, 1] and D is a bounded C'"
open set in RY. When B = oo, we assume that D is connected. Then, on D x D we have

1 8p(x)*/28p(y)*/*
whend > «,
lx — y|d— |x — yl¢
S a/28 a2
Gp(x,y) < qlog| 1+ p()70p () whend =1 = «,
lx — y[*
_ § a/25 a/2
(5p()8p () @2 A LTI <

lx — yl

The rest of this paper is organized as follows. In Section 2, we first solve the martingale-type
problem for Y, which yields the Dynkin-type formula (2.4). Then, in Theorem 2.6, we give the
key estimate for exit distributions. In Sections 3 and 5, we prove the lower bound estimates for
pp(t, x,y). In Section 3, we first consider the case §p(x) A dp(y) > /% that is, x and y are
kept away from the boundary of D. The result and our estimates for the exit distributions are used
in Section 5 to prove the lower bound for all x, y € D. Section 4 contains the proof of the upper
bound. When |x — y| < ¢, we use Meyer’s construction. Then, by using Lemma 4.1 twice, we
prove the upper bound of pp (¢, x, y) without using the lower bound of p(¢, x, y). This enables
us to write the bound of pp(¢, x, y) in a compact form.

Throughout the rest of this paper, the positive constants Cy, Cy, L1, Ly, L3, L4, y1, 2 can be
regarded as fixed. In the statements of results and the proofs, the constants ¢; = ¢;(a, b, c, .. .),
i = 1,2,3,..., denote generic constants depending on a, b, c, ..., whose exact values are
unimportant. These are given anew in each statement and each proof. The dependence of the
constants on the dimension d > 1, on @ € (0, 2), and on the positive constants L1, L, L3,
L4, y1, y2 will not be mentioned explicitly.

2. Estimates for exit distributions

In this section we give some key estimates for exit distributions. First, we introduce an in-
equality that is used several times in this paper.

Lemma 2.1. Suppose that B € [0, 00). For any ro > 0, there exists a positive constant ¢ =
c(B, ro) such that

j@r) <cjQ@2r) foreveryr € (0,ro]. 2.1
Moreover, (2.1) holds for § = oo if ro < 1/4.

Proof. The result follows immediately from L;le_”z’ﬂr_d_“ <jr) < Ll_le_yl’ﬂr_d_“. ]
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For ¢ € (0, 1/2), we define the operators A, and A by
Aeg(x) = f (&(y) —g(x)J(y,x)dy and Ag(x) :=limA.g(x)
{(yeRe:|y—x|>¢)} £l0

whenever these exist pointwise. We use Cg(Rd) to denote the space of twice differentiable
functions with compact support. For every g € CC2 (R?) and r € (¢/2, 1] we have

Acg(x) = (/ +/ ) () — gk (x,y)jlx —yhdy
{yeR9:r>|y—x|>¢} {yeR?:|y—x|>r}

= k(x, x) (&(y) —g())j(lx — yDdy

{(yeR9:r>|y—x|>¢}

+/ (8(y) — g (x, ) — k(. x))j (1x — YDy
{(yeRe:r>|y—x|>¢}
+ f (g(y) — (e, 1) j (x — yDdy

{yeR?:|y—x|>r}

= Kk(x,x) () —gx)—(y—x)-Vgx) j(y —xDdy

(yeRe:r>|y—x|>e}
+ /Rd(g(y) —g(x))j(Ix = yD(Xpr> x—y>e) W) (K (x, ¥) — K (x, x))
+ Ly (M (x, ¥))dy. 2.2)
By (1.2)—(1.5) we have

‘(g()’) —g(x)j(lx—yD (1{r>|x7y|>s}(y)(K(x, y) —k(x,x)) + 1{|x7y|zr}(y)/<(x, y))|
< Ll -y >} (018 (Y) — g(x)[lx — y|7d7°’+/’
+2L3lIg lloo Lx—y[=ry (M) x — ¥ 747

By this and the assumption p > «/2 which is greater than o« — 1, we see that Ag is well defined
in R? and that A, g converges to Ag locally uniformly in R as ¢ — 0. Furthermore, for every
r € (0, 1] we have

Ag(x) = k(x, x) (g(y) —g(x) = (y —x) - Vg(x)) j(ly — xdy
{(yeRe:r>|y—x|}

+ /Rd(g(y) — 80 j(1x = YD (Vs x—yn M e (x, y) = (x, X))

ey (DK (X, ¥))dy, 2.3)

and
gloe < et [ (L 02051777
Y 4 T ()Y ) dy < oo

Next, we solve the martingale-type problem for the operator .4 on CC2 (R?) and show that the
Dynkin-type formula in terms of A is valid for every f € Ccz, (R9)Y (cf. [23, Section 6]).
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Proposition 2.2. For each f € CCZ(Rd) and x € R4, there exists a Py-martingale M,f with
respect to the filtration of Y such that M/ = f(Yy)— f(Yo) —fot Af(Ys)ds Py-a.s. In particular,
forevery f € CC2 (R and any bounded open subset U of R¢ we have

w
Ex/o Af(Ypdt = E[f (Ye,)] — f(x). 2.4

Proof. We fix f € CE(Rd) and assume that the support of f is a subset of B(0, R/2). We use a
strict version of Fukushima’s decomposition [21, Theorem 5.2.5]. First, it is clear from (1.7) that
f € F.The energy measure (i sy of f has the density I'(f)(x) = f]Rd (f )= fFON2 T (x, y)dy.

Now, by Fubini’s theorem and the dominated convergence theorem, for any g € CC2 (RY) we
have

1
E(f, g) = zlim &) —gCNSf ) = fNJI(y,x)dx dy
2 €40 J{(x,y)eRIxRY, |y—x|>¢)

—lim [ ¢(x) (/ (f) = fONI(y, X)dy) dx
(yeR?:|y—x|>¢}

el0 Jrd

- / gx)Af(x)dx.
R4

We recall from [21] that Sy is the collection of positive Radon measures of finite energy
integrals and

o0
Soo = i € So : (R?) < oo, sup / f e 'p(t, x, y)dip(dy) < oot .
xerd JRd Jo
Let v := vy — v_, where vy (dx) = —ligrx)<0)Af(X)dx and v_(dx) = Li4700)=0
Af(x)dx, so that E(f, 8) = [ga &(x)v(dx). Note that ||[Af|c < oo and that |Af(x)| <
c1lx|74=* for x € B(0, R). Thus, |v|(R?) < co. Moreover, clearly

o o
sup / / e”'p(t, x, y)dtv|(dy) < ”-Af”oo/ e”'dt < oo.
R4 JO 0

xeRd
Thus, vy and v_ are in Sgp. Similarly, since [I'(f)]lcoc < 00 and [T'(f)(x)] < calx| 74 for
x € B(0, R)°, we have ) (RY) < 0o and so 1(y) is also in Spo.
Since —fot Liarx,)<oAf(Xg)ds and f(; 1A rx,)=0)Af (Xy)ds are positive continuous
additive functionals in the strict sense with Revuz measures vy and v_, respectively, upon
applying [21, Theorem 5.2.5] we conclude that for every x € R? we have

t t
f(V) — f(Yo) = M} +/0 Liary=00Af (Ys)ds +/0 LA <oy Af (Ys)ds
t
=M/ +/ Af (Yy)ds,
0

where M,‘f is a Py-martingale additive functional in the strict sense with Revuz measure
wep- b

Using (2.4), we prove the following lemma, which is used several times in Section 4. The
proof of the next result is well-known (e.g., see [28, Lemma 4.15]).
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Lemma 2.3. For every a € (0, 1], there exists a positive constant ¢ = c(a) such that, for any
B € [0, o0], any r € (0, 1], and any open sets U and D with B(0,ar) N D C U C D, we have

P, (Yru € D) <cr *Ey[ty]l, x € DN B(0,ar/2).

Proof. For fixed a € (0, 1], we take a sequence of radial functions (¢, ),>1 in C2° (R?) such
that 0 < ¢, < 1, with

_ 0, if|yl <a/2or|y| >m+2,
¢“”—L,ﬁasM5m+L
and
d 9 d 82
sup —9 + 1) <cp=ci(a) < 00.
m=1 ; 0yi " lloo z‘,j2::1 0310y oo

For any r € (0, 1], define ¢y, - (y) = ¢ (%) so that 0 < ¢y, < 1,

|0, if|y| <ar/2or|y| >r(m+2)
Om,r(y) = {1’ ifar < |yl <r(m+1), 2.5)
and
d 9 ) d 32 )
sup —Om, <cir~ and sup bm, <cyr”. (2.6)
mZI; ay, " [e%e) m>1 l’,jZ:l 8ylay/ " 00

Using (1.4), (1.5), (2.6), and the assumption that p > «/2, for every x € R?,r € (0, 1], and
m > 1 we have

K(x, x) (B () = Pm,r (x) = (v = %) - Ve (1)) Ji(ly — xl)dy‘

(yeRe:|x—y|<r}
+ / |G, (¥) = P (X1 (1x = ¥])
R4

X (Lpx—yl<ryOIE(x, y) — k6, )| + Lje—y =y (DK (x, ¥)) dy

c c
S _i |x_y|7d70(+2dy_’__2/ |x_y|7d*(1+1+pdy
™ J{lx—yl<r} o Hx—yl<r}
+Q/ x — v~ dy
{Ix—yl=r}
<c3(r Y4+ rYP) < 2c3r7¢ 2.7

for some ¢3 = c3(a) > 0. Now, by combining (2.3)-(2.5) and (2.7), we find that for any
x € DN B(0, ar/2) we have

Py (Yry €{y € D :ar < |yl < (m+ D)r})
=E, [qu,, (Y,U) Yy, e{yeDiar <yl < (m+ l)r}]

w
< E, [¢m,r (Y‘Eu)] = Ey |:/(; A¢m,r(Yt)dt:| < A@m.rlloo Ex[tr] < 2¢3r ™ *Ex [ty ].

Therefore, since B(0, ar) N D C U, we obtain
P, (YTU € D) = lim P, (YTU e{yeD:ar <|y|<@m+ l)r}) <2c3r *Ey[ry]. O
m—0Q



K.-Y. Kim, P. Kim / Stochastic Processes and their Applications 124 (2014) 3055-3083 3065

For the remainder of this section we assume that € (o/2, 1] and that D is a C-7 open set
with C17 characteristics (R, /). Without loss of generality, we assume that R < 1 and 4 > 1.
For each fixed Q € 9D and for every r < R we define

hor() =8 *1pns0.r) (). (2.8)

We next establish two lemmas that are used to obtain the key estimates for exit distribution.
The next lemma and its proof are similar to [9, Lemma 2.3] and [26, Lemma 3.7] and their proofs.
We provide the proof here for completeness. Recall that A%/2 is defined in (1.1).

Lemma 2.4. There exists a positive constant ¢ = ¢(n, R, A) independent of Q € 3D such that
A“/ZhQ,Rp is well defined in D N B(Q, R/8) and

|A*2hg R (x)| < ¢ forallx € DN B(Q, R/8).

Proof. Since the case of d = 1 is easier, we give the proof only for d > 2.

Let h(-) == hg rp2(-). Fixx € DN B(Q, R/8) and let z, € 9D such that §p(x) = |x — z,|.
Let ¢ bea C17 function and CS = C SZY be an orthonormal coordinate system with z, chosen
so that x = (0 x4), BOLRYND = {y = (3,y5)inCS : y € BO,R),ys > ¢},
$©0) = 0,Vp(©0) = (0,...,0), [Volls < A and |Vh(3) — Voo @)| < AT — Z|". We fix
the function ¢ and the coordinate system CS, and we define a function A, (y) = g+ (y)*/?,
where HT = {y = (y vg)inCS : yd_> 0} is the half space in CS.

We define ¢ : B(O R) — R by g ¢(~) = 2A|y|"*1. Since V¢ (0) = 0, by the mean value
theorem we have ¢(y) <¢(H) < ¢(y) for any y € D N B(x, R/8). Since AY2p, (y) = 0 for
any y € H™T (see, [22, (6.6)]), it is enough to show that A“/z(h — hy)(x) is well defined and that
there exists a constant ¢; = ¢1(n, R, A) > 0 independent of x € D N B(Q, R/8) and Q € 9D
such that

h(y)—h
/ Mdy < ¢ < 00. (2.9)
pun+ |y —x|dte

LetA:={y € DUH)NBE R/B): —$(3) < ya < ()} and E := {y € B(x, R/8) :
ya > ¢(¥)}. We prove (2.9) by showing that I + II + 11 < ¢, where

h hy h hy
] ::/ ) + (y)dy’ 11 ::f ) + (y)dy’
B(x,R/8)¢ A

|y—x|d+°‘ |y—x|d+°‘
111 — |h(y) — hx(y)]
~JE ly —x|dte

For I, since h = 0 on B(Q, R/2)¢ and dy+(y) = ya < |y — z|l + za < 2|y — z| for
0 <zg <R/8andy € B(z, %)C N HT, we have

! b1+ ()2
I < (R/2)°‘/2/ c ————dy + sup / ————dy
B(x.8) 1y = xI T+ 8o &) e 1y — 27

{zeR4:0<z4 <R/} e+ 1y
1
smmW[

1
s(o8) e +/B(o,§y i

dy < oo.

For 11, we first note that for any y € A, h(y) + he(y) < e |F| M2 and my_1({y : |3] =
r=¢(3) < ya < d(MY) < c3r¥t1=1 for r < R/8, where my_1(dy) is the surface measure.
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Hence, for «/2 < n we have

R/8
ol / LA O)IFI 2514 (dy)r
0o Jpl=r

R/8
< 64/ p 22 g o,
0

Next we estimate I11.1f0 < y; = 8+ (y) < 8p(y), then 8p(y) — ya < 44|+ and
h(y) = () < (a + 441512 = 3572 < 20 AF) )y 27!
If ya = 8+ (y) > 8p(»), then 8p(y) = yg — 24|5|"*" and
he(y) = h() < 35 = a — 2A|y|’?“)°‘/2 < aA[F"(ya — 24157
Since |yd|§ < Qa — 2A|y|’7+1) 27, we only need to consider the second case. Thus, using
E C {|y] < R/4, ¢>(y) <Vyg < ¢(y) —|—R/4} and the change of variable s = y; —¢(r) we have
3114 (g — 24131 3!
e (Bl v = yaD T
c6/R/4 f¢(r)+R/4 s = $r0* dyqdr
¢

) (r + |xq — ya)e+1=n

R/4 R4 (51
= c6/ f = dsdr
0 0o (r+lxg—(s+o@r)heti-n

Then, we use [31, Lemma 4.4], which is a consequence of the rearrangement inequality, and
obtain

R/2 u 4 R/2
111 < 206/ </ tzldt> u gy — ¢ w2 Mgy < 0o, O
0 0 (24 0

111

IA

Recall that i g ,(y) is defined in (2.8) foreach Q € 9D and r < R.

Lemma 2.5. For any k > 0, let B, = {y e DN B(Q, %) : SDQB(Q’%)(y) > 2_k}. Then, for
every |z| < 27k,
Azhg.rpp(w) = lim (ho.r2(Y) —hgrpw—2) J(w,z+y)dy  (2.10)
e70Jjw-2)—yl>e

is well defined in By. Moreover, there exists C, = Cy(n, R, A, p) > 0 independent of Q, k, and
r < R such that

|./Z(ZhQ,r/2(U))| < Cur™? forallw e By, |z] <27

Proof. For x € DN B(Q, %), let

[x —ylP Al
I[=1x):= [ |ho.r/2(y) = hg.rpp(x)| Tk =y dy
R

and

dy
1, =11.(x) = (hQ,r/Z(y) - hQ;"/Z(x)) d+a’
ly—x|>e lx =yl
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Forr < R, let x" = r~lx, o= r’lQ, and D" = r~!'D. The D" are C!:" open sets with the
same C1+7 characteristics (1, A) for all < R, and

dv

He=re” /v_xr|>s,1 (80 @1 prapgr12) ) = 8pr 7)*2) a7 —pjdte

Thus, by Lemma 2.4, lim,_, ¢ I I, exists and satisfies | limg_,o I I;| < cr/2,
Similarly, we obtain
rPlx" —vlP Al

r=rr /ﬂ;d )‘SD’(U)“/ 1prosor.1/2) () = 8pr (xr)a/z‘ I — v]dte

Since [8pr (V)2 — Spr (x")*/2| < |8pr (V) — 8pr (x7)|*/% < |v — x"|*/2, for r < 1 we have

rPlx" —v|P Al
/Rd 80 0 Lo 1/2) @) = 807 ()| T — e

- / |x" — v|ﬂ+a/2d N /‘ 1
= —_—av (6] _—
DrAB(Qr1/2) X7 — 4t (DrAB(Qr 1 2 X7 — v]dte

|u|p+a/2 Al
<c3 Tdu < oQ.
Re  lultte

dv

In the last inequality above we used the assumption that p > «/2.
From (1.2)—(1.6) we observe that

f (hguw () — hopa(w —2)) J(w. 2+ y)dy
{y:[(w—2)—y|>¢}

k(w,z+y)
d+ dy
lw—z =yl Y (Jw —z — y])
(ho,r2(y) —horp(w —2))
Vi(lw —z — yD|w — z — y|d+
(hor2(y) —hgrpw—2))
il w—z)—y|=e} Y1(lw —z — yD|w —z — y|d+@

= / (ho.r2(y) = hgrpa(w —2))
{y:l(w—2)—y|>¢}

Z/ (K(wvz+y)_K(wsw)) dy
{y:l(w—z)—yl|>¢}

+k(w, w)

and

/ (ho.r2(¥) —hgrpw—2) J(w,z+ y)dy
{y:l(w—z)—yl>e¢}

<cgl(w—2)+call(w—2).
Therefore, A, h 0.r/2(w) exists on By and we have |ALh 0.r2W)| < csrme/?
and |z| <27, O

forevery w € By

Using Lemma 2.5, we prove the following theorem which plays a critical role in estimating
the exit distribution. The proof of the next theorem is modeled after the proof of [29, Lemma 4.5].
In the next theorem for x € D, we use z, to denote a point on d D such that |z, — x| = §p(x),
and we use the coordinate system CS; with a CL" function ¢ such that ¢(0) = 0, Vg (0) =
©, ..., 0), [Volloo < 4, Vo) — Vo (@)| < AT — #]", and BO, R)N D = {y = (7, ya) €
B(zx, R)in CS;, : $(J) < ya}. For the next theorem and its proof, we always use this coordinate
system CS;, .



3068 K.-Y. Kim, P. Kim / Stochastic Processes and their Applications 124 (2014) 3055-3083

Theorem 2.6. There are constants by = bi(n, R, A, p) € (0,1/10) and ¢; = c¢;(n, R, A) > 1
such that for any r < bi(R A 1)/2 and x € D with §p(x) < r we have

E: [tonBen] < €1 7?8 (x)*>  where z, € 3D with $p(x) = |x — 24, (2.11)
and foranyr < (RA1)/4, A > 4 and x € D with§p(x) < )Flr/2 we have

1 dp (x)a/Z

P, (Y € A5 < ya, A"l < |y| < rin CS, }) > 120
r) X 1 ra/2

TDAB(zx 11

(2.12)

where z,, € 0D and §p(x) = |x — Zy|.

Proof. Without loss of generality, we assume that z, = 0 and let A(a, b) := B(0, b)\B(0, a)
with 0 < a < b. Letr < (R A 1)/2 and h(y) = ho,n2(y) (see (2.8)). Let f be a
nonnegative smooth radial function such that f(y) = 0 for |[y| > 1 and fRd fydy = 1.
For k > 1, we define fi(y) := 2k f(2ky) and O (z) == (fi * h)(z) € CX(R?), and we let
By :={y € DN B0, r/8) : Spnp./s(») = 27"}

By Lemma 2.5/,\,zl\zh(w) exists for w € By and z € B(0, 27%), with —C,.r—*/? < .,zl\zh(w) <
C.r~*/?, where A h(w) is defined in (2.10) and C, is the constant in Lemma 2.5. Then, by
letting ¢ — 0 and using the dominated convergence theorem, it follows that Ah® is well defined
everywhere and for large k and |z| < 27 we have

JAR® ()| = ‘ / fie@Ah(w) dz
|z]

<2k

< C*r_"/Z/ fi(@) dz
|z]<2—k

a2

< Cyr™ on By. (2.13)

Applying (2.4) to U)]f = DN B0, A" 'r) N By with A > 8 and ¥ and using (2.13) we have

k —a/2 k k
E, |:h( >(YIU§)] = Car™PE, [r ] = hP ) < B, [h‘ )(Yrui()i|
+C*r_°‘/2Ex I:TU)’f] , XxE€ U)lf.
Since A® is in cx (R?) and by letting k — oo, forall A > 8 and x € DN B(0, »~'r) we obtain

(SD(x)a/z > ]Ex [h (YTDﬁB(O‘)L_lr))jI - C*ria/zEx [TDQB(O,)L—I}A)] (214)

and
502 < By [ (Yo, 0,1 ) |+ Cor ™ [Tprmo.im1n)]- 2.15)

Forany z € DN B, A"'r)and y € D N (B0, 2" 'r)\B(0, 1~1r)), since 2|y| < r < 1/2,
we have j(ly —zI) = j(lyl +|z]) = j@2lyD = c1j(Iy]). Thus, by (1.8) we obtain

& W (y . rDmB(O,)rlr)_ Y drs “/2d
[ (Yeporin) ] = x/mwmr)/o J (1Y = yDdsp () dy

> ¢1 By [Tpnpoa-1r)] / JUyDSp(**dy.  (2.16)
DNAG1r271r)
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Similarly, with V := {24]y| < y4} we also have

P (YTDHB(O,A_lr) eVNAGTr, 271”))
> 2B [tpnnostn] / j(lyDhdy.
VNAG—1r2-1r)
Clearly,

\
|
<
—
>
IS)
[\
Q
N—

/ ly|=~dy >
VAAG-1r2-1r) a

> 8 ,-a (A“—=1) foreverya > 0.

Since for every y € B(0, R) N D with 24|y| < y; we have

Sp) = A+ D" Ga— o) = A va — AIF)
> @My = @O+ DTV2En Ny,

by changing to polar coordinates with |y| = s and using (2.18) we obtain

/ J(yDSp(»)*2dy > / J(1yD8n () 2dy
DNAM~1r,271r) VNAGL—1r271r)

= C4f~ N |y|—d—(x|y|a/2dy
{(Y»Yd)I2A|y|<yd,A—lr<|y‘<2—1r}

> csr/? (A“/z — 1) .
Then, combining (2.16) and (2.19) yields

—a/2 2
By [h (YtDﬁB(O,)rlr))] Z Cer o ()“a/ - 1) Ex [TDWB(OJFIF)]

and (2.17) and (2.18) yield

P, (Y

TpnB0,x~ 1 R)

eVn A()\._lr, 2_1r)) > C6r_a ()\'Ol — 1) E)C [TDQB(O’)\—lr)] .

3069

2.17)

(2.18)

(2.19)

(2.20)

2.21)

Hence, by (2.14) and (2.20), we find that for every A > Ao := (2 + 2Cx/c6)>® Vv (10) and

8p(x) < A~ we have

8p(x)*/?

v

(C6)xa/2 — (06 + C*)) Fﬁa/z]Ex [‘CDﬂB(O,)x_Ir)]
C6 .1 _
> 507 N P tpnp -1 )

Thus, we have proved (2.11) with by = Ay and r = (R A 1)/2.
Conversely, since & is zero on D¢ and bounded above by (r/2)%/2,

a/2
Ex [h (YTDmB(o,rlw)] = (/27 Py (YrDﬂB(Owrlr) < D) '

(2.22)
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Thus using (2.15) and this, and then using Lemma 2.3 and (2.21), we find that for every A > 8
and p(x) < )Flr/Z we obtain

8p(x)*/?

IA

/2Py (¥

TpnB©O,x~1r)

€ D) + C*}"_a/z]Ex [IDQB(O,)L*W)]

IA

=% (e72% + C) Ex [tprp.a-1n)]
< 2+ Gy
=T (A% — 1)ce x ( TpNB(0,2~1r)
a/2 (c7 + CA® (
e o~ AN i x Y‘[ -
(e — (k/2)°‘)c6 DNB,2~1r)

_ a2 c7+ Cy (
=r (1 =2"%)¢ * \ "onBOA~IN

Thus, we have proved (2.12). U

eVmAa—%24m)

evaa*nTHQ

evnAu”nrvﬁ.

3. Preliminary lower bound estimates

In this section, we discuss a preliminary lower bound for pp (¢, x, y).

Note that conditions in [7] are even weaker than conditions in [8]. Thus Y satisfies conditions
imposed in [7]. Using [7, Theorem 1.4 and Lemma 2.5], the proof of the next lemma is the same
as that of [12, Lemma 3.1]. Thus, we omit the proof.

Lemma 3.1. Let T, a, and b be positive constants. For any 8 € [0, 00], there exists a constant
c=c(a,b, B, T) > 0such that for all . € (0, T] we have
inf Py (rB(z’zml/a) >ak) >c.

ye]Rd
ly—zl<bal/e

Next, we give some preliminary lower bound estimates for pp (¢, x, y) on Sp(x)ASp (V)AT >
t1/® which are used to derive the sharp two-sided estimates for pp (¢, x, y). We first consider D
an arbitrary nonempty open set, and we use the convention that §p(-) = oo when D = R?. This
convention allows us to derive the lower bound of p(z, x, y) simultaneously.

Using [7, Theorem 1.4] and Lemma 3.1, the proof of the next lemma is the same as that of
[12, Proposition 3.2]. Thus, we omit the proof.

Proposition 3.2. Let D be an arbitrary open set and let a and T be positive constants. Suppose
that (t,x,y) € (0,T] x D x D, withdp(x) > arl’e > 2|x — y|. Then, for any B € [0, oo], there
exists a positive constant ¢ = c(a, B, T) such that pp(t,x,y) > ¢ fd/e,

Proposition 3.3. Let D be an arbitrary open set and let a and T be positive constants. Suppose
that (t,x,y) € (0, T] x D x D, with 8p(x) ASp(y) > at'/* and at'/* < 2|x — y|. Then, for
any B € [0, oo, there exists a constant ¢ = c(a, B, T) > 0 such that pp(t,x,y) > ctj(|x — y|).

Proof. By Lemma 3.1, starting at z € B(y, 4 'at!/%), with probability at least c; = ci(a,
B.T) > 0 the process Y does not move more than 6~ 'ar!/% by time 7. Thus, by the strong
Markov property

P, (Y[D € B(y, 2_1at1/°‘)) > 1Py (YD hits the ball B(y, 4_1at1/°‘) by time t) .
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Now using this and the Lévy system in (1.8), we obtain
P, (Y,D e B(y, 271at1/°‘))

> P (Y2, € B(y, 47 tar"/*y and 1 A TB(x,6-1ar1/e) 1S @ jumping time)

B(x,6~larl/@)
INT e 6=1arl/e)
=c1Ey / / J(Ys, u)duds | . (3.1
0 B(y, 4~ latl/)
Lemma 3.1 also implies that
E)C [t 7AN TB(X,Gflatl/o‘)] > t]Px (TB(X,Gflall/a) > t) >t forallt e (0, T] (32)
We fix the point w on the line connecting |x — y| (i.e., |[x — y| = |x — w| 4+ |w — y|) such

that jw — y| = 7 -2 2ar'/®, which is possible because dp (y) > at'/® . Then, B(w, 2 at'/*) c
B(y, 4~ 1q¢1/*) Moreover, for every (z,u) € B(x, 6’]at1/"‘) x B(w, 2 3at/*) we have

lz—ul <6 tar'/* 42 3qr1/® 4 |x — w
=lx—yl+ 6 +25 =72 ar /Y < jx —y).

Thus, B(w, 2at'/*) c B(y, 4 'at/*) N {u : lu — z| < |x — y|}. Combining this result
with (1.4) and (3.2), we obtain

E [/W’”“"_'“’]/‘y)/ J(Ys, w)d d]
cu)duds
! 0 B(y, 4~ latl/e) *

INTp (6= larl/e
> E, |:/. P / J (Y, M)I{Ys—u<|x—y|}dudsi|
0 B(w,2 Sarl/®)

> 3By [t A Tpirg-tartio | 1Bw, 272at )| j(lx = y) > cat"™ 7% j(1x —y).  (3.3)

Then, using the semigroup property along with (3.3) and Proposition 3.2, the proposition follows
from the proof of [12, Proposition 3.4]. O

Combining Propositions 3.2 and 3.3 with the definition of j, we obtain a lower bound for
pp(t, x,y) that yields the preliminary lower bound for pp (¢, x, y) and p(¢, x, y) for the case
B € [0, 1] and the case 8 € (1, oo] with |x — y| < 1.

Proposition 3.4. Let D be an arbitrary open set and let a and T be positive constants. Suppose
that (t,x,y) € (0, T] x D x D, with §p(x) A Sp(y) > at'’®. Then, for any B € [0, o], there
exists a positive constant ¢ = c(a, B, T) such that

A (x = D).

po(t,x,y) = ¢ (

We next consider cases 8 € (1, o0] with |[x — y| > 1. We will closely follow the proofs of
[6, Theorem 3.6] and [8, Theorem 5.5].

For the remainder of this section, we assume that D is an open set with the following property:
there exist A1 € [1, 0o) and A, € (0, 1] such that for every » < 1 and x, y in a same component of
D with §p(x) Aép(y) > r there exists in D a length parameterized rectifiable curve / connecting
x to y with the length |/| of [ less than or equal to A1 |x — y| and 8p (I (u)) > Apr foru € [0, |I|].

Under this assumption, we prove the preliminary lower bound of pp (¢, x, y) on |x — y| > 1
separately for the case B = oo and the case 8 € (1, 00).
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Proposition 3.5. Suppose that T > 0,a € (0,4_1T_1/°‘], and B = oo. Then, there exist
constants ¢; = ci(a, T, 1, 2) > 0, i = 1,2, such that for any x,y in a same component
of Dwith8p(x) ASp(y) = at'/®, |x —y| > 1, and t < T we have

fo\ ekl
potxnza(m—)
Tlx =yl

Proof. We fix T > O and a € (0,47 '7~1/*], and we let R; := |x — y| > 1. By our assumption
for D, there is a length parameterized curve [ C D connecting x and y such that the total length
|/] of I is less than or equal to A; Ry and §p (I(1)) > Aoat'/® for every u € [0, |I|]. We define k
as the integer satisfying (4 <)4A 1R} <k <4M R+ 1 <5A Ry andr, = 27 asarl/® < 81,
Let x; = [(i|l|/k) and B; := B(xj,r), withi = 0,1,2,...,k. Then, §p(x;) > 2r; and
B; = B(xj,r;) C B(x;,2r;) C D,withi =0,1,2,...,k.

Since 401 R| < k, for each y; € B; we have

[yi = Yig1l < 1yi —xil +|xi — Xig1] + [Xig1 — Vi1
1 I 1 MRy 1 1
Sttt g5 < + - < -
- 8 k 8 401 Ry 4 =2
Moreover, dp(y;) = dp(xi) — |yi — Xil > rr > 1k
Thus, by Proposition 3.4 and (3.4), there are constants ¢; = ¢;j(a, T, A) > 0, i = 1,2, such
that for (y;, yi+1) € B; x Bj+1 we have

(3.4)

t/k
lyi — Yig1]dTe

Observe that 4A 1R <k < 2(k—1) < 8A Ry and r; > Tl/“r,/(Tk). Thus, from (3.5) we obtain

po(t/k, yi, yiy1) = ci ((t/k)_d/“ A ) = 2t /(Tk). (3.5

pD(r,x,y)zf f po(/k.xy) - po (/K. Yoo Iyt - - dy1
By By—1

v

(2t (Th) ORI B | = e3(eat (TR ™HS* > cg(crt (T Ry Hsk
co(t(TRy)~Hwki O

\%

Proposition 3.6. Suppose that T > 0,a € (0, 4’1T’1/"‘], and B € (1, 00). Then, there exist
constants ¢; = ci(a, B, T, A1, 2) > 0, i = 1,2 such that for any x, y in a same component of
D with §p(x) ANdp(y) > atl’®, [x —y| > 1,and t < T we have

B—1
Tix —yl\ 7 8
pp(t,x,y) > citexpy —c2 | [x — yl log—t A (x =y

Proof. We fix T > Oand a € (0, 4_1T_1/°‘], and we let Ry := |x — y|. Ifeither ] < Ry <2or
Rl(log(TRl/t))(ﬁ’l)/ﬂ > (Rl)ﬁ, the proposition holds by virtue of Proposition 3.4. Thus, for
the remainder of this proof we assume that Ry > 2 and R (log(T R, /t))#~D/B < (R})#, which
is equivalent to Ry exp{—(R1)#} < ¢/T.

Let k > 2 be a positive integer such that

TR\ '/? TR\ '/? TR\ /f
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By our assumption for D, there is a length parameterized curve [ C D connecting x and y such
that the total length |/| of [ is less than or equal to A1 Ry and 8p(I(u)) > Azat'/® for every
u € [0, |I|]. We define r; == (27 Asat'/*) A ((611)"'(log(T R1/1))'/P). Then, by (3.6) and the
assumption ((log(TRl/t))l/ﬁ) VvV 2 < Ry we have

1/ 1 1/p
);zaTl/“ t . Qlog2)!/8 [ ¢
2 TRy 611 TR,

<< (10g TR R 3.7
rn<—1[1o < . .
== VBT 301k
We define x; := [(i|l|/k) and B; := B(xj,r;), withi = O0,...,k. Then, ép(y;) >
27 at'/* > 27 1x,a(t/k)'/® for every y; € B;. Note that from (3.7) we obtain
2 R
lvi = yit1l < i — x|l +2r < M+ 5— ) —. (3.8)
3n /) k

Thus, using Proposition 3.4 along with (3.6) and (3.8) we obtain

_ r
pp(t/k, yi,yit1) = c1 <(l/k) e p %J(D’i - yz‘+1|)>

t .
¢ (1 A <% (Ry k)4~ e‘3(R1/k)ﬁ>>

d+o—1
s (E oe3(R1/B)P
TR, \ R,

v

d+a—1

Coe TR 7 (N L () (3.9)
Cy—— og — _— C E— . .
TR, 8 TR,) — “\TR,

Since the lower bound of r; in (3.7) yields r; > c6(t/(TR1))(°‘Aﬂ)71, by using (3.9) and the
semigroup property we conclude that

v

pD(r,x,y)zf / ot/ x, 1) - po(t/ K, eets V)dy1 - dyiei
By Bj—1

> c7exp{—cgklog(T Ry /t)}

TR\ /* TR,
c7exp{—cg | R log - +1 logT
TR \' VP
c7exp{ —co | Ry log - . g

Proof of the lower bound in (1.10). The proof for the two cases § € [0, 1] and 8 € (1, 00]
with [x — y| < 1 follows from Proposition 3.4 with D = R?. The proof for the remaining cases
follows from Propositions 3.5 and 3.6 with D = R?. [

v

IV

4. Upper bound estimates

In this section, we derive the upper bound estimate for pp (¢, x, y) as stated in Theorem 1.2.
We first introduce a lemma that appears in [13]. The proof of the next lemma is identical to that
of [13, Lemma 3.1], so we omit the proof.
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Lemma 4.1. Suppose that Uy, Uz, E are open subsets of R4, with U,Us C E and
dist(Uy,U3z) > 0. Let Uy := E\(Uy U U3). If x € Uy and y € Us, then for every t > 0
we have

PE(.x.y) =By (Yo, €U2)- sup pr(s.z.)

s<t,zelU
t
+ / Py (tv, > s)Py (tg >t —s)ds-  sup  J(u,2) .1
0 uely,zeUs
<P, (Ym] € U2) - sup  p(s,z,y)
s<t,zelU
+ (t A Ex[ty, ]) - sup  J(u,z). “4.2)

uely,zeUs

For the remainder of this section we assume that n € («/2,1],T > 0,and Disa C Ln open
set with characteristics (R, A). Without loss of generality, we assume that A > 1 and R < 10~ L.
Recall that b is the constant in Theorem 2.6. We let

ar =ar.g =2""b RT™Y* < (200)~' T~V

and for x € D we use z, to denote a point on d D such that |z, — x| = §p(x).
We first obtain the upper bound for the survival probability. Recall that ¥ is defined in (1.11).

Lemma 4.2. There exists a positive constant ¢ = c(B, R, A, n, p, T) such that for any (t, x) €
0, T] x Dwe have P,(tp > t) < cW(t, x).

Proof. By the definition of ¥, we need to prove the lemma only for §p(x) < artl/® /8. Let
U = D N B(zy, art'/®). Since Py (tp > t) < Py(zy > t) + Py(X;, € D), by Chebyshev’s
inequality, Lemma 2.3, and (2.11) we have P (tp > 1) < t'E,[ty] + c1(art/*) ™ E [ty] <
28p ()i <30 (t,x). O

Next, we use (4.2) to obtain the intermediate upper bound in which one boundary decay
appears.

Proposition 4.3. For any a < ar and B € [0, o), there exists a positive constant ¢ = c¢(B, R,
A, T,n, p,a) such that for every (t,x,y) € (0, T] x D x D with |x — y| > 12at'/*1g¢[0 1] +
2 1,36(1,00) +2(1 + 2atl/a) . lﬂzoo we have

heynp .1t 1x = y1/3) if B €10, 00),
heyy, ot lx = yl/2)  if =00,

where C1 is the constant in Theorem 1.1 and y is the constant in (1.2).

pD(t5'x’ y) S C!p(tvx) : {

Proof. By virtue of Theorem 1.1 and the fact that r — h, , 7(t, r) is decreasing, the theorem
holds for 8p (x) > at'/%/2.

We now fix (¢, x, y) € (0, T]x D x D with §p(x) < at'/*/2 and |x —y| > 12at"/*1g¢j0.11+
2 - 1ge(i.o0) + 2(1 4+ 2at'/%) - 15_oo, and we define r; == at'/%. Let U} := B(zy, 1) N D, U3 :=
{ze D:|z—x| > |x —y|/2}, and Uy := D\(U; U U3z). Then, x € U; and y € Us. For
ze Uy, |x —y|/2 < |x —y| —|x — z| < |z — y|. Thus, by virtue of Theorem 1.1, we have

sup  p(s,z,y) < co sup heypn, (s, 12—y
s<t,zeUs s<t,|lz=y|>|x—yl|/2

C1 <1 Vv (6(1)_d_a) hcl,yl,T(t’ |~x - )’|/2)

IA
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In fact, if B € (1, oo], we have [z — y| > |x — y|/2 > 1 and so hc, y,,7(s, |z — y|) is increasing
ins. Also, if 8 € [0, 1], we have |[z—y| > |[x — y|/2 > 6ar'/® and sr’“’de’?”ﬁ is increasing in
s. Thus, combining these observations with the fact r — hc, ,, 7 (¢, r) is decreasing, the second
inequality above holds.

Moreover, from Lemma 2.3 and (2.11) in Theorem 2.6 we obtain

8p(x)*/?

Po (Yo, € U2) =Po (Yo, € D) < o 'Eulry] < 3 N

(4.3)

Hence, the first part of (4.2) in Lemma 4.1 is bounded as follows:

8p(x)*/?
P (Y € U2> ( sup p(s, z, y)) S
* o s<t,zeUs \/;

If B € [0, 00), since |x — y| > 12at!/® we have for u € U; and z € Us that

heyy,r (@, |x = yl/2). “4.4)

1/a

lu =zl =z —x| =¥ —zx| =l — 22| > [x = y|/2 = 2at /" = |x — y|/3. (4.5)

Then, from (1.2)—(1.4), (1.6) and (2.11) we obtain
e (x=yl/3)P
Edeo)( swp @, 2) = esvisp() 2t —
uely,zeUs |x - )’| «
5 /2
< p(x)
NG

If B =o0,since |u —z| > |x — y|/2 — 2at'/® > 1 we have J(u,z) = 0on U; x Us. Hence, by
applying (4.4) and (4.6) to (4.2) for the case 8 € [0, 0o0) and applying (4.4) to (4.2) for the case
B = oo, we reach the conclusion. [

By .1t 1x = y1/3). (4.6)

For notational convenience, we denote by X the process Y in the case B = 0, and we let
JX(x,y) = k(x,y)x — y|79 be its jumping kernel. By Meyer’s construction (e.g., see
[15, Section 4.1]), when 8 € (0, oo] the process Y can be constructed from X by removing
jumps of size greater than 1 with suitable rate. Let pg(t, X, y) be the transition density function
of X on D. For 8 € (0, oo], we define

T = [ et =y (1= i - 30! .
R4

where ¥i(Jx — y|) is defined in (1.2). Then, |Jllco < c1 flz|>1 lz|~@tDd; < oo. By
[1, Lemma 3.6] we have B

pot, x,y) < elWlepX i x vy forany (t,x,y) € (0,T] x D x D. 4.7)

(4.7) and the upper bound of pg(t, x,y), which is given next, imply the upper bound of
pp(t, x,y) for |x — y| < M for some M > 0.

Proposition 4.4. There exists a positive constant ¢ = c(R, A, n, p, T) such that for any
(t,x,y) € (0, T] x D x D we have

Xt x,y) < Wt 0) V(. y) (z—d/“ Atlx — y|—“—d) .
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Proof. The semigroup property, Theorem 1.1 (for 8 = 0), and Lemma 4.2 yield

pg(I/Z,x,y) < ( sup pg(t/4,z, w))/ pg(t/4,x,z)dz
D

Z,weD
< c1t7 P (tp > t/4) < etV W (1, x).
Thus, by Proposition 4.3 and Theorem 1.1 (for 8 = 0), we obtain
PE(/2.x.3) = e Waox) - (17 A tlx = 317 < g W x0p¥ /2.3, ),

Combining this with Theorem 1.1 (for 8 = 0), we conclude that

Pt x,y) = f pE(t/2.x.2) - p(t/2, 2. y)dz
D

IA

QU 1)U, y) /R PR/ 9p a2z v

= U, )0, y)p*t, x,y)

esW(t, X)W1, ) (t_d/"‘ Atlx — y|_°‘_d) O

IA

Combining Propositions 4.3 and 4.4, we have the following proposition.

Proposition 4.5. There exists a positive constant ¢ = c(B, R, A, T, n, p) such that for every
(t,x,y) € (0, T] x D x D we have

heyap o, (8 1x —y1/3)  if B €10, 00),
hey (s |x —yl/2) if B = o0,

where C1 is the constant in Theorem 1.1 and y is the constant in (1.2).

pD(t5x’ y) S c!p(t,x) : {

Next, we provide the upper bound estimates for pp (¢, x, y) in the case B € (0, co].

Proof of Theorem 1.2(1). We let r, = art'/®. By Proposition 4.5 and the symmetry of
pp(t, x,y), we may assume that p(x) V dp(y) < ry.
Ifp=o00cand 6 < |x —y| <6(lV Cfl), then by (4.7) and Proposition 4.4 we have

pp(t,x,y) <l W(t, x)U(t, y)(t/T) < c1 U(t,x) ¥(t, y)(t/T)PI/6,

If 8 e€[0,00)and |[x —y| < 6(1V C]_I) or f§ = oo and |x —y| < 6, by (4.7) and Proposition 4.4,
we have

Pt x,y) = €Wl plie x,y) < W0 W y) (7 Al =y 7).

Thus, the theorem holds for |x — y| < 6(1 V Cfl).

For the remainder of the proof, we assume that 6p(x) V ép(y) < r; and [x — y| >
6(1 v C;Y). For any x with 8p(x) < ry, let zx € 8D such that 5p(x) = |zx — x|. Let
Uy == B(zy,1y) N D, U3 :={z € D : |z —x| > |x —y|/2}, and U, := D\(U; U U3).
Note that x € Uy and y € Uz and |x — y|/2 < |z — y| for z € U;. Thus, by Proposition 4.5
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we have

sup  pp(s,z,y)

s<t,zeUs
Sp(»)*/?
< sup ca—r— (hcrayn.7 (s 12 = ¥1/3) - Tpepo.00)
s<t,zeU \/E
+hC1,y1,T(Sa |Z - y|/2) . 1/3:00)
a2 1
<c38p(y) sup — - (hcyapp1 (5, 12 = Y1/3) - 1ge(0,00)

s<t.lx—yl/2<lz—y| /S
+hC1‘y1,T(Sa |Z - )’|/2) : 1ﬂ=00)

3p()*/?
<cs5 7 : (hCIAyl,yl,T(t’ lx — yl/6) - IBE[O,OO)

Fhey T X = ¥1/4) - 1p=co). (4.8)

The last inequality is clear for 8 € [0, c0) by definition of A, 7, and for B = oo we used the
fact that s — s~1/2(s/Tr)¥ is increasing if ar > 1. Hence, from (4.3) and (4.8) we obtain

P, (Yr,,1 € Uz) ( sup  ppls, z, y))

s<t,zeUy

< ¢ 0@ 80 () {hcw.,yl,r(u x = y1/6) if B € [0, 00), 49)
- \/; \/; hcl,yl,T(tv |x_y|/6) lfﬁ:OO '
However, by Lemma 4.2 we have
t t
/ Py (ty, > $)Py(tp >t —s)ds < f Py(tp > $)Py(tp >t — s)ds
0 0
t
< ¢ 3D(X)“/250(y)“/2/ sTV2(t —5)712ds
0
S /2 5 /2
; p(x) p(y) ' 4.10)

Y A

For 8 € [0, c0), we have |u — z| > |x — y|/3 for (u,z) € U; x Uz as in (4.5). Thus, from
(1.2)—(1.4) and (4.10) we obtain

t
/]P’x(rul>s)IPy(tD>t—s)ds~< sup J(u,z))
0

uely,zeUs
Sp ()2 8p(y)@/? e n(x=yI/3)F
<c t
N NG |x — y|d+e
3p(x)* 3p(y)*/?
=09
NG NG
If B = oo, since |u — z| > 1, J(u,z) = 0 on Uy x Us. Therefore, by applying (4.9) and (4.11)

in (4.1) of Lemma 4.1 for 8 € [0, co) and applying (4.9) for 8 = oo, we prove the theorem for
Ix —yl > 6(1vCYanddp(x) Vep(y) <r. O

By, (8 1x = y1/3). 4.11)
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5. Lower bound estimates

We proved the preliminary lower bound estimates in Section 3. In this section, combining
these results with the key estimate in (2.12), we give the full lower bound estimate for pp (¢, x, y)
with the boundary decay terms. We first introduce the next lemma.

Lemma 5.1. Suppose that Ey, E>, E are open subsets of RY with E\,E» C E and
dist(Eq, E2) > 0.If x € E1 and y € Ej, then for allt > 0 we have

PE(, x,y) >t Py(tg, > 1) Py(tg, > 1) inf J(u, w).
(u,w)eE| xEy

Proof. See the proof of [11, Lemma 3.3]. [

For the remainder of this section we assume thatp € («/2, 1], T > 0,and DisaC Ly open set
with characteristics (R, A). Without loss of the generality, we assume that A > 4 and R < 1071,
We let

ar =ar.g =2RTV* <275107 11~V

and for x € D we use z, to denote a point on d D such that |z, — x| = ép(x).
The next two lemmas are crucial to obtain the lower bound on the survival probability where
x is near the boundary of D.

Lemma 5.2. For any a < ar, there exists a positive constant ¢ = c(a, 8, R, A, T, n, p) such
that for everyt < T and x € D with 8p(x) < at'/® we have

8p(x)*/?
PX(tB(zx,lOaz]/”)mD >1/3)>c T

Proof. Without loss of generality, we assume that z; = 0. Consider a coordinate system
CS = CSy such that BO,R)YN D = {y = (V,ys) € BO,R)inCS : y; > ¢},
where ¢ is a C1'7 function such that $(0) = 0,V¢(©0) = (0,...,0), |[Vo|lew < 4, and
V() — Vo ()| < Aly — w]".

Let (y) = 2A1y|and V := {y = (¥,y4) € B(O,R)inCS : yg > ¥ (¥)}. Then, since
¥ (y) = 2A|5|"!, the mean value theorem yields {y = (¥,ys) € B(O,R)inCS : y; >
v ()} C BO,R)ND.

Let Uy := B(0, 2at'/*) N D, U, := B(0, 10at'/*) N D, and

W = {y = (3, ya) € B(0, 8at'/*)\ B(0, 2at'*) in CS : y; > ¥ ()}

Since A|w| = ¥ (w)/2 < wy/2 for w € W, we have

Spw) > (1 + )N wyg — @) > A+ A" Lwg — AT > 271 A+ D7 w51
Moreover, since |@| < 2A4) " w| < A~ Y4ar'/® < ar!/® for w € W, we have

wi = |w|? — |5 > Qar"/*)? — (ar"*)? = 3(at'/*)? forwe W. (5.2)

Combining (5.1) and (5.2), we obtain p(w) > (1 + A)~'ar'/*. Thus, B(w, riat'/*) c U, for
w € W, where r; := (1 + A)~!. Hence, by virtue of the strong Markov property, Lemma 3.1,
and (2.12), we have

Py(tv, > 1/3) = Pa(ty, > 1/3, Yoy € W) = Ex[Py,, (v, > 1/3) : Yoy € W]
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> ]EX[]P;YfUl (TB(YTUl)rlatl/a) > t/3) . YTUI € W]

> (irgd P, (Tp(zrart/ey > t/3)) Py(Yry, € W) = ¢1 Py(Yy, € W)
ZE
3p(x)¥/?
oo———. O
= 2 «/;

We introduce the following definition for the subsequent lemma.

Definition 5.3. Let 0 < « < 1/2. We say that an open set D is «-fat if there is R; > 0 such that
forall x € D and all » € (0, R;] there is a ball B(A,(x), kr) C D N B(x, r). The pair (R, k) is
called the characteristics of the x-fat open set D.

It is clear that a C1" open set D with characteristics (R, A) is always a k-fat set whose
characteristics (R, k) depend only on R, A, and d. Hereinafter, without loss of generality, we
assume that R < R; (by choosing R smaller if necessary) and that A,(x) is always the point
A;(x) € D in Definition 5.3 for D. Recall that ¥ is defined in (1.11).

Lemma 5.4. For any B € [0, 0o), there exists a positive constant ¢ = ¢(8, R, A, T,n,p) > 0

such that, for everyt < T and x € D, we can find x| with §p(x1) > 27 'kart'/® and
Ix1 — x| < 6artY/® such that
/ pp(t/3,x,2)dz > cW(t, x).
B(xy,(k/4)art1/%)
Proof. For 8p(x) < 27 'kart!/?, let x| = Agayi/a(2y). Let By, == B(xy, («/%art'/*) and
B;, = B(zy, 5KﬁTt1/“) N D so that By, N B;, = . By Lemmas 5.1, 5.2 and 3.1,
t
/ pp(t/3,x,2)dz > —/ Py(tp, > 1t/3) P, (tp, >1t/3)- inf J(u, w)dz
By, 3 By, - L (u,w)€B;y X By,
t P 1
2 g X(tBZx >t/3)C] 5 dZ'CZW
X1
8p(x)*/?
= 3P (tp, >1t/3) >c4y ————.
3Px(tp, > 1/3) Z ¢4 N
For 8p(x) > 27 'kart!/%, let x; = x and By, := B(x1, (k/4)art'/%). By Lemma 3.1, there

exists a constant ¢s = ¢s(«, 8, R, T, d, L3) > 0 such that

/ pp(t/3,x,2)dz > / P, (t/3,x,2)dz =Px(tp, >1/3) > cs.
Bx]

By,
This proves the lemma. [

We are now ready to give the proof of the lower bound estimates for pp(, x, y). Recall
our assumption that € («/2,1] and D is a C7 open set. For the cases 8 € (I, c0) with
|x —y| = 1l and B = oo with |x — y| > 4/5, we assume in addition that the path distance in
each connected component of D is comparable to the Euclidean distance with characteristic 1.
Note that combining this assumption with C " assumption entails that D satisfies the assumption
made before Proposition 3.5.
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Proof of Theorems 1.2(2) and 1.2(3). By Lemma 5.4, for any x, y € D, there exist x;, y; € D
such that 8p(x1) A 8p(y1) = 2 'kart'/® and |x; — x| V |y — y| < 6art'/*, and there exists a
constant ¢c; = ¢1(n, p, B, R, A, T) > 0 independent of x, y such that

/ PD(I/3,x,z)dz/ pp(t/3,y,2)dz > c1¥(t,x)¥(t,y), (5.3)
Bx| B)"l

where By, = B(x1, (k/4)art'/%) and By, = B(y1, («/%art'/®). Thus, by the semigroup
property we have

Pt x, y) = / / po(t/3. %, W pp(t/3, 1, w)pp (/3. w, y)dudw
D JD

v

/ pp(t/3, x,u)du

1

X / pp(/3,y, w)dw( inf pD(t/3,u,w)>
BY]

(u,w)eB,cl xBy1

v

¥, x)v(t, y)( inf pp(t/3,u, w). 5.4

u,w GBX] X By,

We now carefully calculate the lower bounds of pp(¢/3, u, w) on By, x By, . Since |x — x|V
ly — yi| < 6art!/®, foru e By, and w € By, we have
e =yl —207" < |x — y| — (124 (c/2))art'/*
< fu—wl < lx =yl + 12+ /2)art/* < x—y|+207"  (5.5)
and 8p(u) A Sp(w) > (k/4art'/e.

If B € [0, 1], then by considering the cases |x — y| < 15art
separately using Proposition 3.4 and (5.5) we obtain

1/« 1/a

and |x — y| > 15art

_ —d—o — —wlB
pp(t/3,u,w) > ¢ (z /A flu — w| 42wl )

v

_ d—a —lr—vlP
C3(t d/“/\tlx—yl d—a ,=ys|x—y| )

If B € (1,00] and |x — y| < 4/5, then (5.5) yields |u — w| < |x — y| + 20! < 1. Thus, by
considering the cases |x—y| < 15a7¢'/* and |x—y| > 15a7t'/* separately using Proposition 3.4
and (5.5), we have pp(t/3, u, w) > c4 (t79/% A (t]x — y|747%)).

If g € (1,00] and 4/5 < |x — y|, then (5.5) yields |[u — w| < |x — y|.

We now consider pp(¢/3, u, w) in each of the remaining cases.

(HIfBe(l,o0)and4/5 < |x — y| < 2, then |u — w| < 1. Thus, by Proposition 3.4, we have
pp(t/3,u, w) > cst.
2) If B =o00and 4/5 < |x — y| < 2, then by Propositions 3.4 and 3.5 we have

/%) = 4 41 Syl
,u,w) = = .
POY/= A OSTix—y = C\5Tx =y
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B)If B € (l,00) and 2 < |x — y|, then | < |u — w]| and from Proposition 3.6 and (5.5) we
obtain

B-1
Tlu—w|\ 7
pp(t/3,u, w) > crtexp { —cg | lu — w| <log %) Alu— w|ﬁ

B-1
B

t

— -1
> ertexp | —cy (5|X—y|/4)(10g(T(|x yI+20 )))

A (Slx — yl/4)P

-1
Tlx —yl\ 7 p
crtexp{ —co | |x —y| logf Alx —y|

v

The last inequality comes from the inequality logr < log(r + b) < 2logr forr > 2 Vv b.
@ Ifp=o00and2 < |x — y|,then 1 < |u — w| and from Proposition 3.5 and (5.5) we have

f crolu—w]| t crzlx—yl
t/3,u,w) >c _— >c
P31 w) “<T|u—w|) “(T(|x—y|+201>>

. t 2cp2|x—y| . 4t 2cp2]x—y|
C —_— C —_— .
=M\ T =y = 5T =y

The second last inequality holds by virtue of the inequality 7> > r + b forr > 2V b.

Hence, combining (5.4) with the above observations on the lower bound of pp(¢/3, u, w), we
have proved Theorem 1.2(2) and 1.2(3). O

Proof of Theorem 1.2(4). Let D(x) and D(y) be connected components containing x and y,
respectively. By definition of a C!:7 open set, the distance between x and y is at least R. Using
Lemma 5.4, we find that x; € D(x) and y; € D(y). We then define By, and By, in the same
way as when beginning the proof of Theorem 1.2(2) and 1.2(3) so that (5.3) holds and for any
u € By, and w € By, we have 3R/4 < 3|x — y|/4 < |u — w| < 5|x — y|/4. By Proposition 3.4,
for every u € By, and w € By, we have

t
e rli—wl’ 5 e V2Glx=yl/4HF

t/3,u,w)>c
po(t/ ) = cl T

lu — w|d+e

Therefore,

po(t.x.y) > f / (/3. %, W) P (3, 14, W) pp(t/3, w, Y)dwdy
B, /By,

2/ PD(t/3,x,u)du/ po(t/3,y, wydw - inf  pp(t/3, u, w)
By, By, (u,w)€ By X By,
t
>3 U (t, X)W, y)- we%@l*ﬂ/“)", 0
X =y

Proof of Theorem 1.2(5). Note that, since D is bounded and connected, the estimate for
pp(t, x,y) at small time is the same as that obtained for a symmetric stable process in [10].
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Thus, the remainder of the proof of Theorem 1.2(5) using the estimate for pp (¢, x, y) at small
time is routine (see [10]) and we omit it here.
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